短期氮、水添加和刈割对苦豆子型退化草地植物群落特征与土壤理化性质的影响
刘淑琪 , 崔东 , 刘文新 , 杨海军 , 杨延成 , 江智诚 , 闫江超 , 刘江慧
草业学报 ›› 2025, Vol. 34 ›› Issue (03) : 41 -55.
短期氮、水添加和刈割对苦豆子型退化草地植物群落特征与土壤理化性质的影响
Effects of short-term nitrogen addition, watering, and mowing on plant community characteristics and soil physicochemical properties in Sophora alopecuroides degraded grassland
在全球气候变化和人为活动加剧影响草地生态系统的背景下,新疆干旱半干旱区毒害草入侵面积日益增加,生物多样性迅速丧失,草地退化严重,威胁着草地生态系统的健康。研究氮沉降、降水变化和刈割对苦豆子型退化草地植物群落特征与土壤理化性质的影响,对未来草地生态系统的可持续管理有理论和实践意义。本研究在以苦豆子为单优物种的退化草原开展了控制试验,共设置8个处理:对照(CK),氮添加,水添加,刈割,氮、水添加交互,氮添加、刈割交互,水添加、刈割交互以及氮、水添加、刈割三因子交互,分析植物物种多样性、初级生产力、株高、盖度、土壤理化性质的变化规律以及苦豆子植被特征与土壤理化因子的关系。结果表明:氮添加增加了苦豆子生物量,刈割显著降低了苦豆子生物量和株高。氮添加,氮水交互,氮添加、刈割交互和氮、水添加、刈割三因子交互处理显著增加了土壤硝态氮含量,氮、水添加和刈割三因子交互处理显著增加了土壤铵态氮含量。通过冗余分析和回归分析表明土壤有机质、全氮、全磷、Ca2+和HCO3-显著影响苦豆子密度。氮添加可以增加土壤无机氮的含量,刈割在一定程度上可以抑制苦豆子的生长,水添加和其他因子交互作用比单独水添加对植物和土壤的影响效果显著,该结果可为苦豆子型退化草地的治理恢复提供新的见解。
In the context of global climate change and intensified human activities affecting grassland ecosystems, the increasing area of invasion by poisonous weeds in the arid and semi-arid regions of Xinjiang is threatening the health of grassland ecosystems through rapid loss of biodiversity and serious grassland degradation. The study of the effects of nitrogen deposition, precipitation change, and mowing on plant community characteristics and soil physicochemical properties of Sophora alopecuroides degraded grassland has theoretical and practical significance for sustainable management of this grassland ecosystem in the future. This study conducted a controlled experiment on degraded grasslands with S. alopecuroides as a single dominant species. We set up a total of eight treatments. The eight treatments were: CK (no nitrogen, no water, no mowing), nitrogen addition (N treatment), water addition (W treatment), mowing (M treatment), nitrogen-water interaction (NW treatment), nitrogen-mowing interaction (NM treatment), water-mowing interaction (WM treatment), nitrogen-water-mowing interaction (NWM treatment). We analyzed the variation in plant species diversity, primary productivity, plant height, vegetation cover, soil physicochemical properties, and the relationship between vegetation characteristics of S. alopecuroides and soil physicochemical factors. The results indicated that: nitrogen addition significantly increased the biomass of S. alopecuroides, while mowing significantly decreased the biomass and height of S. alopecuroides. Nitrogen addition in the N, NW, NM and NWM treatments significantly increased soil nitrate nitrogen content, and the NWM treatment significantly increased soil ammonium nitrogen content. Redundancy analysis and regression analysis showed that soil organic matter, total nitrogen, total phosphorus, Ca2+ and HCO3- significantly affected the density of S. alopecuroides. Nitrogen addition increased the content of inorganic nitrogen in soil. Mowing inhibited the growth of S. alopecuroides to some extent. The interaction effect of water addition and other factors was more significant than that of water addition alone on plants and soil. The results provide new insight for the management and restoration of S. alopecuroides degraded grassland.
苦豆子 / 生物多样性 / 生物量 / 土壤养分 / 土壤盐分
Sophora alopecuroides / biodiversity / biomass / soil nutrients / soil salinity
| [1] |
Suttie J M, Reynolds S G, Batello C. Grasslands of the world. Rome: Food and Agriculture Organization of the United Nations, 2005. |
| [2] |
O’Mara F P. The role of grasslands in food security and climate change. Annals of Botany, 2012, 110(6): 1263-1270. |
| [3] |
Gibbs H K, Salmon J M. Mapping the world’s degraded lands. Applied Geography, 2015, 57: 12-21. |
| [4] |
Lark T J, Spawn S A, Bougie M, et al. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nature Communications, 2020, 11(1): 4295. |
| [5] |
Wang D L, Wang L, Xin X P, et al. Systematic restoration for degraded grasslands: Concept, mechanisms and approaches. Scientia Agricultura Sinica, 2020, 53(13): 2532-2540. |
| [6] |
王德利, 王岭, 辛晓平, 退化草地的系统性恢复:概念、机制与途径. 中国农业科学, 2020, 53(13): 2532-2540. |
| [7] |
Zhou W, Yang H, Huang L, et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 2017, 83: 303-313. |
| [8] |
Ash A J, Corfield J P, Mcivor J G, et al. Grazing management in tropical savannas: utilization and rest strategies to manipulate rangeland condition. Rangeland Ecology & Management, 2011, 64(3): 223-239. |
| [9] |
Long R J, Dong S K, Hu Z Z. Grassland degradation and ecological restoration in Western China. Grassland and Turf, 2005(6): 3-7. |
| [10] |
龙瑞军, 董世魁, 胡自治. 西部草地退化的原因分析与生态恢复措施探讨. 草原与草坪, 2005(6): 3-7. |
| [11] |
Wang J L. Research on species diversity and integrated control technology of poisonous weeds in Xinjiang grazing grassland. Yangzhou: Yangzhou University, 2020. |
| [12] |
王军亮. 新疆放牧草地毒害草种属多样性与综合防控措施研究.扬州: 扬州大学, 2020. |
| [13] |
Huang R J, Zhang C Y, Wen Y T, et al. Predicting the habitats of Achnatherum inebrians in China under current (1970—2000) and future climate conditions. Acta Agrestia Sinica, 2022, 30(10): 2712-2720. |
| [14] |
黄睿杰, 张春艳, 温雨婷, 当前(1970—2000)与未来气候变化情境下中国醉马芨芨草潜在分布预测. 草地学报, 2022, 30(10): 2712-2720. |
| [15] |
Catorci A, Cesaretti S, Malatesta L, et al. Effects of grazing vs mowing on the functional diversity of sub-Mediterranean productive grasslands. Applied Vegetation Science, 2014, 17(4): 658-669. |
| [16] |
Catorci A, Cesaretti S, Gatti R, et al. Trait-related flowering patterns in submediterranean mountain meadows. Plant Ecology, 2012, 213(8): 1315-1328. |
| [17] |
Kőrösi Á, Szentirmai I, Batáry P, et al. Effects of timing and frequency of mowing on the threatened scarce large blue butterfly-a fine-scale experiment. Agriculture, Ecosystems & Environment, 2014, 196(1793): 24-33. |
| [18] |
Cao H Y. Effects of mowing on plant community characteristics, soil physicochemical properties and greenhouse gas flux in meadow steppe in Inner Mongolia. Hohhot: Inner Mongolia University, 2023. |
| [19] |
曹贺颖. 刈割对内蒙古草甸草原植物群落特征、土壤理化性质及温室气体通量的影响. 呼和浩特: 内蒙古大学, 2023. |
| [20] |
Bardgett R D, Wardle D A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 2003, 84(9): 2258-2268. |
| [21] |
Lafage D, Maugenest S, Bouzillé J B, et al. Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecological Research, 2015, 30(6): 1025-1035. |
| [22] |
Niu S L, Wu M Y, Han Y, et al. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 2010, 16(1): 144-155. |
| [23] |
Zhang J F, Xu Y Q. Responses of plant biomass and net primary production to nitrogen fertilization and increased precipitation in re-grassed croplands in Duolun County of Inner Mongolia, China. Chinese Journal of Eco-Agriculture, 2016, 24(2): 192-200. |
| [24] |
张金凤, 徐雨晴. 水氮添加对内蒙古多伦县退耕还草地生物量、生产力及其分配的影响. 中国生态农业学报, 2016, 24(2): 192-200. |
| [25] |
Li Q, Jiang Y, Liang W J, et al. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology, 2010, 46(1): 111-118. |
| [26] |
Yang H J, Li Y, Wu M Y, et al. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species’ traits. Global Change Biology, 2011, 17(9): 2936-2944. |
| [27] |
Xu Z, Wan S, Ren H, et al. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One, 2012, 7(6): e39762. |
| [28] |
Collins S L, Sinsabaugh R L, Crenshaw C, et al. Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology, 2008, 96(3): 413-420. |
| [29] |
Peng S S, Piao S L, Shen Z H, et al. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis. Agricultural and Forest Meteorology, 2013, 178/179: 46-55. |
| [30] |
Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 2009, 15(4): 808-824. |
| [31] |
Johnson L, Kuske R, Carney D, et al. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Global Change Biology, 2012, 18(8): 2583-2593. |
| [32] |
Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the species richness of grasslands. Science, 2004, 303(5665): 1876-1879. |
| [33] |
Clark C M, Tilman D. Loss of plant species after chronic low level nitrogen deposition to prairie grasslands. Nature, 2008, 451(7179): 712-715. |
| [34] |
Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20(1): 30-59. |
| [35] |
Schimel D S, Braswell B H, Parton W J. Equilibration of the terrestrial water nitrogen, and carbon cycles. Proceedings of the National Academy of Sciences, 1997, 94(16): 8280-8283. |
| [36] |
Sun X, Zhang X, Zhang S, et al. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS One, 2013, 8(12): e82468. |
| [37] |
Cui D. Study on the ecological stoichiometric characteristics of plant and soil in different diffusion stages of Sophora alopecuroides population in Yili river valley. Urumqi: Xinjiang University, 2018. |
| [38] |
崔东. 伊犁河谷苦豆子种群不同扩散阶段的植物与土壤生态化学计量学特征研究. 乌鲁木齐: 新疆大学, 2018. |
| [39] |
Duan L, Hao J M, Xie S D, et al. Estimating critical loads of sulfur and nitrogen for Chinese soils by steady state method. Environmental Science, 2002, 23(2): 7-12. |
| [40] |
段雷, 郝吉明, 谢绍东, 用稳态法确定中国土壤的硫沉降和氮沉降临界负荷. 环境科学, 2002, 23(2): 7-12. |
| [41] |
Xu Z W, Li M H, Niklaus E Z, et al. Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 2018, 106(5): 1941-1951. |
| [42] |
Zhu W W, Wang P, Xu Y X, et al. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition. Chinese Journal of Plant Ecology, 2021, 45(3): 309-320. |
| [43] |
朱湾湾, 王攀, 许艺馨, 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素. 植物生态学报, 2021, 45(3): 309-320. |
| [44] |
Zhao F C, Chen H F, Wang Y H, et al. Response of rhizosphere soil properties to changed precipitation and nitrogen addition in a salinized grassland. Acta Agrestia Sinica, 2022, 30(9): 2430-2437. |
| [45] |
赵芳草, 陈鸿飞, 王一昊, 盐渍化草地根际土壤理化性质对降水改变和氮添加的响应. 草地学报, 2022, 30(9): 2430-2437. |
| [46] |
Bao S D. Soil analysis in agricultural chemistry. Beijing: China Agriculture Press, 2008. |
| [47] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2008. |
| [48] |
Tilman D. Resource competition and community structure. Princeton: Princeton University Press, 1982. |
| [49] |
DeMalach N, Zaady E, Kadmon R. Contrasting effects of water and nutrient additions on grassland communities: A global meta-analysis. Global Ecology and Biogeography, 2017, 26(8): 983-992. |
| [50] |
Suonan J, Lu X W, Li X N, et al. Nitrogen addition strengthens the stabilizing effect of biodiversity on productivity by increasing plant trait diversity and species asynchrony in the artificial grassland communities. Frontiers in Plant Science, 2023, 14: 1301461. |
| [51] |
Kozlowski T T. Water deficits and plant growth. New York: Academic Press, 1968. |
| [52] |
Patrick L, Cable J, Potts D, et al. Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas. Oecologia, 2007, 151(4): 704-718. |
| [53] |
Wang X, Xu Z, Lv X, et al. Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 2017, 418: 241-253. |
| [54] |
Lawlor D W. Photosynthesis, productivity and environment. Journal of Experimental Botany, 1995, 46: 1449-1461. |
| [55] |
Lea P J, Morot-Gaudry J F. Plant nitrogen. Berlin, Heidelberg: Springer, 2001. |
| [56] |
Lemaire G, Khaity M, Onillon B, et al. Dynamics of accumulation and partitioning of N in leaves, stems and roots of lucerne (Medicago sativa L.) in a dense canopy. Annals of Botany, 1992, 70(5): 429-435. |
| [57] |
Theobald J C, Mitchell R A, Parry M A, et al. Estimating the excess investment in ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of spring wheat grown under elevated CO2. Plant Physiology, 1998, 118(3): 945-955. |
| [58] |
Lawlor D W, Young A T. Photosynthesis by flag leaves of wheat in relation to protein, ribulose bis phosphate carboxylase activity and nitrogen supply. Journal of Experimental Botany, 1989, 40(1): 43-52. |
| [59] |
Lu Y D, Feng J, Shao Z, et al. Responses of plant communities, species composition, and diversity to mowing and long-term grazing in the Songnen meadow steppe. Pratacultural Science, 2024, 41(2): 271-283. |
| [60] |
卢彦达, 丰吉, 邵泽, 松嫩草甸草原植物群落物种组成和多样性对刈割和长期放牧的响应. 草业科学, 2024, 41(2): 271-283. |
| [61] |
Ren Y L. Effects of precipitation change on inorganic nitrogen and net nitrogen mineralization rate at a plantation of Mongolian pine. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(6): 925-932. |
| [62] |
任艳林.降水变化对樟子松人工林土壤无机氮和净氮矿化速率的影响. 北京大学学报(自然科学版), 2012, 48(6): 925-932. |
| [63] |
Yan Z Q, Qi Y C, Peng Q, et al. Advances in the effects of simulated precipitation and nitrogen deposition on grassland biomass. Acta Agrestia Sinica, 2017, 25(6): 1165-1170. |
| [64] |
闫钟清, 齐玉春, 彭琴, 模拟降水和氮沉降增加对草地生物量影响的研究进展. 草地学报, 2017, 25(6): 1165-1170. |
| [65] |
Wu X D, Jiang Q, Ren X B, et al. Effects of precipitation on carbon, nitrogen and microbial characteristics of biological soil crusts in a desert steppe of Northern China. Acta Prataculturae Sinica, 2021, 30(7): 34-43. |
| [66] |
吴旭东, 蒋齐, 任小玢, 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响. 草业学报, 2021, 30(7): 34-43. |
| [67] |
Yang Y, Zhang N, Jiang L L, et al. Effects of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in Bird Island of Qinghai Lake on the Tibetan Plateau. Acta Agrestia Sinica, 2021, 29(5): 1043-1052. |
| [68] |
杨阳, 章妮, 蒋莉莉, 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应. 草地学报, 2021, 29(5): 1043-1052. |
| [69] |
Liu X C, Zhang S T. Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil. Plant and Soil, 2019, 440: 11-24. |
| [70] |
Wei X X, Wu J Q, Li G, et al. Response of soil nitrogen components to nitrogen addition in wet meadow in the Tibetan Plateau. Acta Agrestia Sinica, 2021, 29(4): 677-683. |
| [71] |
魏星星, 吴江琪, 李广, 青藏高原湿草甸土壤氮组分对氮添加浓度的响应. 草地学报, 2021, 29(4): 677-683. |
| [72] |
Xiao L, Liu G B, Li P, et al. Direct and indirect effects of elevated CO2 and nitrogen addition on soil microbial communities in the rhizosphere of Bothriochloa ischaemum. Journal of Soils and Sediments, 2019, 19(11): 3679-3687. |
| [73] |
Liu H Y, He P, Cai J P, et al. Effects of simulated nitrogen deposition on soil pH and electric conductivity in a typical grassland of Inner Mongolia. Chinese Journal of Soil Science, 2016, 47(1): 85-91. |
| [74] |
刘贺永, 何鹏, 蔡江平, 模拟氮沉降对内蒙古典型草地土壤pH和电导率的影响. 土壤通报, 2016, 47(1): 85-91. |
| [75] |
Tong Y S, Zhang C P, Dong Q M, et al. Effects of different forms of nitrogen addition on soil physical and chemical properties and microbial community structure of perennial alpine cultivated grassland. Environmental Science, 2024, 45(6): 3595-3604. |
| [76] |
童永尚, 张春平, 董全民, 不同形态氮添加对多年生高寒栽培草地土壤理化性质和微生物群落结构的影响. 环境科学, 2024, 45(6): 3595-3604. |
| [77] |
Feng X J, Simpson A J, Schlesinger W H, et al. Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest. Global Change Biology, 2010, 16(7): 2104-2116. |
| [78] |
Long M, Wu H H, Smith M D, et al. Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant and Soil, 2016, 408: 475-484. |
| [79] |
Yang L X, Chen S F, An J J, et al. Relationships among community diversity and soil organic matter, total nitrogen under different vegetation types in the Gully Region of Loess Region. Acta Agrestia Sinica, 2014, 22(2): 291-298. |
| [80] |
杨丽霞, 陈少锋, 安娟娟, 陕北黄土丘陵区不同植被类型群落多样性与土壤有机质、全氮关系研究. 草地学报, 2014, 22(2): 291-298. |
| [81] |
Chenchouni H. Edaphic factors controlling the distribution of inland halophytes in an ephemeral salt lake “Sabkha ecosystem” at North African semi-arid lands. Science of the Total Environment, 2017, 575: 660-671. |
| [82] |
Luo Y Y, Meng Q T, Zhang J H, et al. Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages. Journal of Glaciology and Geocryology, 2014, 36(5): 1298-1305. |
| [83] |
罗亚勇, 孟庆涛, 张静辉, 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系. 冰川冻土, 2014, 36(5): 1298-1305. |
| [84] |
Cui Q, He T H, Quan X S, et al. Effects of soil salinity characteristics on plant community in Ordos salt marsh wetland. Journal of Salt Lake Research, 2022, 30(1): 25-32. |
| [85] |
崔乔, 何彤慧, 全晓塞, 鄂尔多斯盐沼湿地土壤盐分特征对植物群落的影响. 盐湖研究, 2022, 30(1): 25-32. |
国家自然科学基金(32260272)
第三次新疆综合科学考察项目(2022xjkk0405)
/
| 〈 |
|
〉 |