干旱胁迫及复水对裸果木幼苗生理特性的影响
王小风 , 马步东 , 黄海霞 , 罗永忠 , 齐建伟 , 邓卓
草业学报 ›› 2025, Vol. 34 ›› Issue (04) : 93 -103.
干旱胁迫及复水对裸果木幼苗生理特性的影响
Effects of drought stress and rehydration on the physiological characteristics of Gymnocarpos przewalskii seedlings
裸果木是亚洲中部荒漠区的特有种,其耐旱耐瘠薄,有较强的抗风固沙能力,是我国重点保护野生植物。本研究以二年生裸果木幼苗为试验材料,设置对照(土壤水分保持在田间持水量的60%~70%)和干旱处理(水分梯度依次设计为田间持水量的40%~50%、30%~40%、20%~30%、10%~20%、5%~10%),开展干旱胁迫及复水试验,测定叶水势、渗透调节物质含量和抗氧化指标,探究干旱胁迫如何影响幼苗叶片的生理特性以及复水后植物的恢复能力,以期为裸果木干旱适应机制的研究及物种保护提供理论依据。结果显示:随干旱胁迫时间的延长,脯氨酸(Pro)、可溶性蛋白(SP)、可溶性糖(SS)、丙二醛(MDA)含量和过氧化物酶(POD)活性均显著上升;超氧化物歧化酶(SOD)活性先上升后下降;过氧化氢酶(CAT)活性、叶水势呈下降趋势。SP含量、SOD和CAT活性在复水第5天时基本恢复至对照水平,其他各指标在复水第10天时基本恢复至对照水平。干旱胁迫下,裸果木幼苗通过主动积累Pro、SP和SS降低渗透势,采取低水势耐受干旱的方式;通过增强SOD和POD酶活性和积累抗坏血酸(AsA)来清除过量的活性氧。复水后,裸果木幼苗具有较强的恢复能力。
Gymnocarpos przewalskii is an endemic species in the desert region of central Asia. It is tolerant to drought and barrenness, with a strong ability to reduce wind erosion and stabilize sand. Thus, it is a key wild plant for environmental protection in China. The aim of this work was to determine how drought stress affects the physiological characteristics of the leaves of G. przewalskii seedlings, and to evaluate their ability to recover after rewatering, with a view to exploring its drought adaptation mechanism. In these experiments, 2-year-old G. przewalskii seedlings were subjected to drought treatments (soil moisture at 40%-50%, 30%-40%, 20%-30%, 10%-20%, and 5%-10% of field capacity) or control conditions (soil moisture at 60%-70% of field capacity) and then rewatered. The leaf water potential, osmotic regulator content, and antioxidant indexes were determined to investigate its responses to drought and rewatering. The results showed that proline (Pro), soluble protein (SP), soluble sugar (SS), and malondialdehyde contents and peroxidase (POD) activity increased significantly as the duration of the drought treatments extended. Superoxide dismutase (SOD) activity first increased and then decreased, and catalase (CAT) activity and leaf water potential showed a decreasing trend during the drought treatments. The SP content and SOD and CAT activities recovered to levels similar to those in the control at the 5th day after rewatering, and other indexes recovered to levels similar to those in the control at the 10th day after rewatering. Under drought stress, G. przewalskii seedlings reduced their osmotic potential by actively accumulating Pro, SP, and SS, and adopted a drought-tolerant state by maintaining a low water potential. In drought-affected seedlings, reactive oxygen species were effectively scavenged because of increased activities of SOD and POD and the accumulation of ascorbic acid. After rewatering, the G. przewalskii seedlings showed a strong ability to recover. These findings provide new information about the drought adaptation mechanism of G. przewalskii, a plant with potential uses in environmental conservation projects.
裸果木 / 干旱胁迫 / 复水 / 渗透调节物质 / 抗氧化指标
Gymnocarpos przewalskii / drought stress / rehydration / osmoregulatory substances / antioxidant indexes
| [1] |
Feng Y Z, Zhao Y, Wang B P, et al. Effects of drought and rewatering on photosynthesis and chlorophyll fluorescence of Paulownia catalpifolia seedlings. Journal of Central South University of Forestry & Technology, 2020, 40(4): 1-8. |
| [2] |
冯延芝, 赵阳, 王保平, 干旱复水对楸叶泡桐幼苗光合和叶绿素荧光的影响. 中南林业科技大学学报, 2020, 40(4): 1-8. |
| [3] |
Yang Y, Zhou Y, Ban X W, et al. Effects of morphological and physiological characteristics of Coix lacryma-jobi L.seedlings under drought stress. [2024-05-10]. http://kns.cnki.net/kcms/detail/46.1068.S.20230706.1405.006.html. |
| [4] |
杨云, 周宇, 班秀文, 干旱胁迫对薏苡幼苗形态和生理特征的影响. [2024-05-10]. http://kns.cnki.net/kcms/detail/46.1068.S.20230706.1045.006.html. |
| [5] |
Wang R H. Physiological study on stress resistance ofpsammophyte Agropyron cristatum. Nanjing: Nanjing Forestry University, 2003. |
| [6] |
王荣华. 沙生植物——冰草抗逆生理研究. 南京: 南京林业大学, 2003. |
| [7] |
Mohammad M, Sadaf C, Daniel K, et al. Drought: sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum, 2021, 172(2): 1291-1300. |
| [8] |
Lai J L, Luo X G. High-efficiency antioxidant system, chelating system and stress-responsive genes enhance tolerance to cesium ionotoxicity in Indian mustard (Brassica juncea L.). Ecotoxicology & Environmental Safety, 2019, 181: 491-498. |
| [9] |
Huang L, Peng Y K, Li H L, et al. Effects of soil moisture regimes on growth and photosynthesis of the riparian plant Bolboschoenus planiculmis. Forest Science and Practice, 2013, 15(2): 105-113. |
| [10] |
Wang B. Research of drought and cold resistance of introducted woody ornamental plants in Inner Mongolia Bayan Obo Mining District. Beijing: Beijing Forestry University, 2012. |
| [11] |
王斌. 内蒙古白云鄂博矿区引种木本观赏植物抗旱和抗寒研究. 北京: 北京林业大学, 2012. |
| [12] |
Wu R X, Yang J C, Wang L Q, et al. Physiological response of flax seedlings with different drought-resistances to drought stress. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 145-153. |
| [13] |
吴瑞香, 杨建春, 王利琴, 不同抗旱类型胡麻幼苗对干旱胁迫的生理响应. 华北农学报, 2019, 34(2): 145-153. |
| [14] |
Farquhar G D, O'leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology, 1982, 9(2): 121-137. |
| [15] |
Zhang Y Y, Wang J X, Ma X, et al. Effects of drought and rewatering on chlorophyll fluorescence parameters of Platycladus orientalis. Research of Soil and Water Conservation, 2021, 28(2): 242-247, 255. |
| [16] |
张玉玉, 王进鑫, 马戌, 土壤干旱及复水对侧柏叶绿素荧光参数的影响. 水土保持研究, 2021, 28(2): 242-247, 255. |
| [17] |
Liang A H, Ma F Y, Liang Z S, et al. Studies on the physiological mechanism of functional compensation effect in maize root system induced by re-watering after draught stress. Journal of Northwest A&F University (Natural Sciences Edition), 2008, 36(4): 58-64. |
| [18] |
梁爱华, 马富裕, 梁宗锁, 旱后复水激发玉米根系功能补偿效应的生理学机制研究. 西北农林科技大学学报(自然科学版), 2008, 36(4): 58-64. |
| [19] |
Xiong H H, Yun C, Jing K X, et al. Morphological and physiological changes in Artemisia selengensis under drought and after rehydration recovery. Frontiers in Plant Science, 2022, 13: 851942. |
| [20] |
Niu X Y, Ma R. Effects of drought stress on leaf physiology of Reaumuria soongorica seedlings during the growing season. Pratacultural Science, 2023, 40(10): 2483-2492. |
| [21] |
牛欣益, 马瑞. 红砂幼苗叶片生理特性对干旱胁迫的响应. 草业科学, 2023, 40(10): 2483-2492. |
| [22] |
Liu J, Li M Q, Chang J F, et al. Physiological characteristics of soybean leaves at different growth stages. Chinese Journal of Agrometeorology, 2022, 43(8): 622-632. |
| [23] |
刘江, 李明倩, 常峻菲, 干旱胁迫及复水对大豆关键生育时期叶片生理特性的影响. 中国农业气象, 2022, 43(8): 622-632. |
| [24] |
Xu L M, Cao Y, Tang S W, et al. Effects of drought stress and rewatering on physiological characteristics of Arundo donax var. versicolor. Science of Soil and Water Conservation, 2020, 18(3): 59-66. |
| [25] |
许令明, 曹昀, 汤思文, 干旱胁迫及复水对花叶芦竹生理特性的影响. 中国水土保持科学, 2020, 18(3): 59-66. |
| [26] |
Yang Z P, Xu Y L, Li Z J. The leaf blade anatomical structures and their ecological adaptability of Gymnocarpos przewalskii Maxim. Journal of Anhui Agricultural Sciences, 2011, 39(7): 3929-3931. |
| [27] |
杨赵平, 徐雅丽, 李志军. 裸果木叶片的解剖结构与生态适应性. 安徽农业科学, 2011, 39(7): 3929-3931. |
| [28] |
Lian Z H. Physiological responses of Gymnocarpos przewalskii leaves to natural drought. Lanzhou: Gansu Agricultural University, 2018. |
| [29] |
连转红. 裸果木叶片对自然干旱的生理响应. 兰州: 甘肃农业大学, 2018. |
| [30] |
Cui P, Huang H X, Yang Q Q. Response of biomass and antioxidant enzyme activities of Gymnocarpos przewalskii seedlings to drought stress. Science of Soil and Water Conservation, 2020, 18(5): 112-118. |
| [31] |
崔鹏, 黄海霞, 杨琦琦. 裸果木幼苗生物量和抗氧化酶活性对土壤干旱胁迫响应. 中国水土保持科学, 2020, 18(5): 112-118. |
| [32] |
Huang H X, Yang Q Q, Cui P, et al. Changes in morphological and physiological characteristics of Gymnocarpos przewalskii roots in response to water stress. Acta Prataculturae Sinica, 2021, 30(1): 197-207. |
| [33] |
黄海霞, 杨琦琦, 崔鹏, 裸果木幼苗根系形态和生理特征对水分胁迫的响应. 草业学报, 2021, 30(1): 197-207. |
| [34] |
Huang H X, Han G J, Chen N L, et al. Water consumption pattern of Capsicum annuum under regulated deficit irrigation in desert oasis. Journal of Natural Resources, 2012, 27(5): 747-756. |
| [35] |
黄海霞, 韩国君, 陈年来, 荒漠绿洲调亏灌溉条件下辣椒耗水规律研究. 自然资源学报, 2012, 27(5): 747-756. |
| [36] |
Chen J H. The characteristics of drought resistance of seedlings of five tree species. Taian: Shandong Agricultural University, 2003. |
| [37] |
陈吉虎. 五树种的苗期抗旱特性研究. 泰安: 山东农业大学, 2003. |
| [38] |
Zeng J W, Deng G M, Gao C Y, et al. Comparative proteomic analysis in peels ofChuntianju (Citrus reticuiata Blanco) and its mutant. Scientia Agricultura Sinica, 2015, 48(24): 4965-4978. |
| [39] |
曾继吾, 邓贵明, 高长玉, ‘春甜橘’及其突变体果皮差异相关蛋白质组分析. 中国农业科学, 2015, 48(24): 4965-4978. |
| [40] |
Li H S. Water potential and plants. Plant Physiological Communication, 1981, 27(3): 53-60. |
| [41] |
李合生. 水势与植物. 植物生理学通讯, 1981, 27(3): 53-60. |
| [42] |
Wei C B, Zhang P, Qin Y, et al. Physiological responses of Yixing lily leaf and bulb to drought stress. Plant Physiology and Biochemistry, 2010, 11(1): 33-35, 58. |
| [43] |
Miao W D, Wang M, Gao H C, et al. Effects of exogenous melatonin on antioxidant enzyme activity and AsA-GSH cycle of different grape varieties under low temperature stress. Jiangsu Agricultural Sciences, 2021, 49(23): 133-138. |
| [44] |
苗卫东, 王萌, 高换超, 外源褪黑素对低温胁迫下不同葡萄品种抗氧化酶活性和AsA-GSH循环的影响. 江苏农业科学, 2021, 49(23): 133-138. |
| [45] |
Pei H L, Cheng X M, Huang X Y, et al. Key issues and algorithms of multiple-input-multiple-output over-the-air testing in the multi-probe anechoic chamber setup. Science China (Information Sciences), 2022, 65(3): 51-77. |
| [46] |
Yang S S, Gao J F, Li X J. Leaf senescence in higher plant. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(6): 223-229. |
| [47] |
杨淑慎, 高俊凤, 李学俊. 高等植物叶片的衰老. 西北植物学报, 2001, 21(6): 223-229. |
| [48] |
Shandong Agricultural College, Northwest Agricultural College.Experimental guidance of plant physiology. Jinan: Shandong Science and Technology Press, 1980: 121-128. |
| [49] |
山东农学院, 西北农学院. 植物生理学实验指导. 济南: 山东科学技术出版社, 1980: 121-128. |
| [50] |
Fu A H, Chen Y N, Li W H, et al. Research advances on plant water potential under drought and salt stress. Journal of Desert Research, 2005, 25(5): 744-749. |
| [51] |
付爱红, 陈亚宁, 李卫红, 干旱、盐胁迫下的植物水势研究与进展. 中国沙漠, 2005, 25(5): 744-749. |
| [52] |
Wang J X, Huang B L, Wang M C, et al. Sensitivity of Platycladus orientalis young tree to water stress and its transpiration efficiency at different growth stages during annual growth period. Acta Ecologica Sinica, 2005, 25(4): 711-718. |
| [53] |
王进鑫, 黄宝龙, 王明春, 侧柏幼树不同生长阶段对水分的敏感性与蒸腾速率. 生态学报, 2005, 25(4): 711-718. |
| [54] |
Wang J X, Huang B L, Wang M C, et al. Transpiration water consumption of young Platycladus orientalis and Robinia pseudoacacia trees and their correction functions under different water supply. Chinese Journal of Applied Ecology, 2005, 16(3): 419-425. |
| [55] |
王进鑫, 黄宝龙, 王明春, 不同供水条件侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正. 应用生态学报, 2005, 16(3): 419-425. |
| [56] |
Li G F. Studies on photosynthetic apparatus operation in apple leaves under drought stress. Yangling: Northwest A & F University, 2014. |
| [57] |
李国防. 干旱胁迫下苹果叶片光合机构运转的研究. 杨凌:西北农林科技大学, 2014. |
| [58] |
Li J W, Wang J X, Zhang M L, et al. Effect of drought and rewater on leaf water potential of Robinia pseudoacacia. Journal of Northwest Forestry University, 2009, 24(3): 33-36. |
| [59] |
李继文, 王进鑫, 张慕黎, 干旱及复水对刺槐叶水势的影响. 西北林学院学报, 2009, 24(3): 33-36. |
| [60] |
Lv C Y, Gao Z X, Yan Y, et al. Effects of drought-rewatering on leaf water potential of two Dendrobium plants. Guihaia, 2021, 41(2): 177-182. |
| [61] |
吕朝燕, 高智席, 严羽, 干旱-复水对两种石斛属植物叶水势的影响. 广西植物, 2021, 41(2): 177-182. |
| [62] |
Wang D, Yao J, Yang X, et al. Changes of leaf water potential and water absorption potential capacities of six kinds of seedlings in Karst mount area under different drought stress intensities: Taking six forestation seedlings in karst Mountainous region for example. Acta Ecologica Sinica, 2011, 31(8): 2216-2226. |
| [63] |
王丁, 姚健, 杨雪, 干旱胁迫条件下6种喀斯特主要造林树种苗木叶片水势及吸水潜能变化. 生态学报, 2011, 31(8): 2216-2226. |
| [64] |
Li D Q, Zou Q, Cheng B S. Methods for determination of plant osmotic adjustment. Plant Physiology Communications, 1991, 27(4): 296-298. |
| [65] |
李德全, 邹琦, 程炳嵩. 植物渗透调节的测定方法介绍. 植物生理学通讯, 1991, 27(4): 296-298. |
| [66] |
Kuang Y W, Xu Y M, Zhang L L, et al. Dominant trees in a subtropical forest respond to drought mainly via adjusting tissue soluble sugar and proline content. Frontiers in Plant Science, 2017, 8: 802 |
| [67] |
Zhou R L, Sun G J, Wang H O. Osmoregulation changes in desert plants under drought and high temperature stresses, related to their resistance. Journal of Desert Research, 1999(S1): 19-23. |
| [68] |
周瑞莲, 孙国钧, 王海鸥. 沙生植物渗透调节物对干旱、高温的响应及其在抗逆性中的作用. 中国沙漠, 1999(S1): 19-23. |
| [69] |
Huang Y, Liu D Y, Li T J, et al. Drought tolerance of 5 Camellia oleifera varieties in Yunnan Province. Journal of West China Forestry Science, 2017, 46(2): 144-149. |
| [70] |
黄钰, 刘代亿, 李甜江, 云油茶5个优良品种苗木抗旱性研究. 西部林业科学, 2017, 46(2): 144-149. |
| [71] |
Sun G R, Zhang R, Jiang L F, et al. Water metabolism and changes of several osmotica in leaves of Betula platyphylla seedlings under drought stress. Bulletin of Botanical Research, 2001, 21(3): 413-415. |
| [72] |
孙国荣, 张睿, 姜丽芬, 干旱胁迫下白桦(Betula platyphylla)实生苗叶片的水分代谢与部分渗透调节物质的变化. 植物研究, 2001, 21(3): 413-415. |
| [73] |
Wang W, Li D Q, Li C X, et al. Effects of water stress on osmotic adjustment of leaves and roots of maize with different drought resistance. Acta Agriculture Boreali-Sinica, 2000(S1): 8-15. |
| [74] |
王玮, 李德全, 李春香, 水分胁迫对抗旱性不同的玉米品种根、叶渗透调节能力及渗透调节物质的影响. 华北农学报, 2000(S1): 8-15. |
| [75] |
Ban T T, Zhang S Q, Xiao T J, et al. Effects of drought stress on protective enzyme activity and osmotic adjustment substances of Stachys sieboldii Miq. Acta Agriculture Universitatis Jiangxiensis, 2018, 40(5): 956-964. |
| [76] |
班甜甜, 张素勤, 肖体菊, 干旱胁迫对草石蚕保护酶活性和渗透调节物质的影响. 江西农业大学学报, 2018, 40(5): 956-964. |
| [77] |
Chen A P, Sui X Q, Wang Y X, et al. Effects of drought and rewatering on growth and physiological characteristics of Seriphidium transiliense seedlings. Acta Agrestia Sinica, 2020, 28(5): 1216-1225. |
| [78] |
陈爱萍, 隋晓青, 王玉祥, 干旱胁迫及复水对伊犁绢蒿幼苗生长及生理特性的影响. 草地学报, 2020, 28(5): 1216-1225. |
| [79] |
Lv C Y, Gao Z X, Xu X X, et al. Effects of drought stress and dehydration on the physiological characteristics of Alsophila spinulosa. Forestry Resource Management, 2022(5): 160-168. |
| [80] |
吕朝燕, 高智席, 徐兴线, 干旱胁迫及复水对桫椤生理特性的影响. 林业资源管理, 2022(5): 160-168. |
| [81] |
Safari M, Khorasaninejad S, Soltanloo H. Involvement of abscisic acid on antioxidant enzymes activity and gene expression in Lavandula angustifolia cv. Munstead under drought stress. Acta Physiologiae Plantarum, 2024, 46(4): 44. |
| [82] |
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 2006, 141(2): 391-396. |
| [83] |
Ge T D, Sui F G, Bai L P, et al. Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agricultural Sciences in China, 2006, 5(4): 291-298. |
| [84] |
Yang W, Liu W H, Ma X, et al. Effects of ROS accumulation and antioxidant system in two different drought resist Elymus sibiricus under drought stress. Acta Agrestia Sinica, 2020, 28(3): 684-693. |
| [85] |
杨伟, 刘文辉, 马祥, 干旱胁迫对2种不同抗旱性老芒麦幼苗ROS积累及抗氧化系统的影响. 草地学报, 2020, 28(3): 684-693. |
| [86] |
Hassan I A, Basahi J M, Haiba N S, et al. Investigation of climate changes on metabolic response of plants: Interactive effects of drought stress and excess UV-B. Journal of Earth Science & Climatic Change, 2012, 4(1): 1-6. |
| [87] |
Yu P, Luo L, He J Y, et al. Physiological responses of Taxis media cv. hicksii under CH2O stress. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1791-1799. |
| [88] |
余普, 罗蓝, 何佳忆, 曼地亚红豆杉对甲醛胁迫的生理响应. 西北植物学报, 2015, 35(9): 1791-1799. |
| [89] |
Wu J W, Wang Q Y. Effects of PEG stress on resistance physiological and biochemical indexes of wild and cultivated Taraxacum mongolicum. Jiangsu Journal of Agricultural Sciences, 2010, 26(2): 264-271. |
| [90] |
吴嘉雯, 王庆亚. 干旱胁迫对野生和栽培蒲公英抗性生理生化指标的影响. 江苏农业学报, 2010, 26(2): 264-271. |
| [91] |
Wu M, Liu X B, Ding L R, et al. Effects of silicon on germination and physiological characteristics of alfalfaunder drought stress simulated by PEG. Acta Agrestia Sinica, 2017, 25(6): 1258-1264. |
| [92] |
吴淼, 刘信宝, 丁立人, PEG模拟干旱胁迫下硅对紫花苜蓿萌发及生理特性的影响. 草地学报, 2017, 25(6): 1258-1264. |
| [93] |
Yang F Y, Wei C F, Liu Y. Protective enzyme systems in orange leaves under drought stress. Journal of Plant Nutrition and Fertilizer, 2006, 12(1): 119-124. |
| [94] |
杨方云, 魏朝富, 刘英. 干旱胁迫下甜橙叶片保护酶体系的变化研究. 植物营养与肥料学报, 2006, 12(1): 119-124. |
| [95] |
Zheng Q L, Yang Z R, Zhang X Y, et al. Effects of drought stress on ascorbic acid contents and metabolism related enzymes of Pugionium cornutum and P. dolabratum. Plant Physiology Journal, 2018, 54(12): 1865-1874. |
| [96] |
郑清岭, 杨忠仁, 张晓艳, 干旱胁迫对沙芥和斧形沙芥抗坏血酸含量及其代谢相关酶的影响. 植物生理学报, 2018, 54(12): 1865-1874. |
| [97] |
Wang J, Li D Q. Effects of water stress on AsA-GSH cycle and H2O2 content in maize root. Chinese Journal of Eco-Agriculture, 2002, 10(2): 98-100. |
| [98] |
王娟, 李德全. 水分胁迫对玉米根系AsA-GSH循环及H2O2含量的影响. 中国生态农业学报, 2002, 10(2): 98-100. |
| [99] |
Jiang Z Z, Zhu H G, Zhu H Y, et al. Exogenous ABA enhances the antioxidant defense system of maize by regulating the AsA-GSH cycle under drought stress. Sustainability, 2022, 14(5): 3071. |
国家自然科学基金(32160409)
横向合作项目“沙化土地封禁保护区社会经济效益监测”(03723019)
/
| 〈 |
|
〉 |