盐池滩羊肉品质特性及其潜在调控机理探讨

杨攀平 ,  李惠侠 ,  胡亚美

草业学报 ›› 2025, Vol. 34 ›› Issue (04) : 223 -232.

PDF (3311KB)
草业学报 ›› 2025, Vol. 34 ›› Issue (04) : 223 -232. DOI: 10.11686/cyxb2024182
综合评述

盐池滩羊肉品质特性及其潜在调控机理探讨

作者信息 +

Exploration of meat quality characteristics of Yanchi Tan sheep and the potential regulatory mechanisms

Author information +
文章历史 +
PDF (3390K)

摘要

盐池滩羊是宁夏当地的优良特色畜种,因其肉质鲜嫩、膻味轻、大理花纹明显而深受消费者青睐。但随着封山禁牧政策的实施和舍饲圈养的现代化畜牧业发展,致使滩羊肉品质下降,故提升滩羊肉质风味,改善肉品质性状成为研究者及生产者关注的重点,而明确滩羊肉质特征及其影响因素的作用机制对于提升羊肉品质具有重要意义。本研究从营养、遗传和环境阐述其对肌内脂肪沉积和肌纤维分化的影响及作用机理,重点总结了瘤胃微生物对滩羊肉品质的代谢调控作用, 以期为提高滩羊肉品质奠定理论基础。

Abstract

The Yanchi Tan sheep is an excellent local breed in Ningxia, China. It is highly favored by consumers because of its tender meat, light mutton flavor, and distinct marbling. However, the implementation of mountain enclosures and grazing ban policies, coupled with the development of modern intensive animal husbandry, has led to a decline in the meat quality of Tan sheep. Improving the flavor and quality characteristics of Tan sheep meat has become a key focus for both researchers and producers. Elucidating the meat quality traits of Tan sheep and the underlying mechanisms of the influencing factors is of great significance for enhancing the overall quality of sheep meat. This study explores the effects and mechanisms of nutrition, genetics, and environment on the deposition of intramuscular fat and muscle fiber differentiation. In particular, we focus on how the metabolic regulation of rumen microbiota affects the meat quality of Tan sheep. The results of this study provide a theoretical knowledge base to guide efforts in improving the meat quality of this breed.

Graphical abstract

关键词

盐池滩羊 / 瘤胃微生物 / 肌内脂肪 / 肌肉纤维 / 肉质

Key words

Yanchi Tan sheep / rumen microbiota / intramuscular fat / muscle fiber / meat quality

引用本文

引用格式 ▾
杨攀平,李惠侠,胡亚美. 盐池滩羊肉品质特性及其潜在调控机理探讨[J]. 草业学报, 2025, 34(04): 223-232 DOI:10.11686/cyxb2024182

登录浏览全文

4963

注册一个新账户 忘记密码

随着社会的进步和人民生活水平的提高,优质、健康且高端的羊肉需求量逐年增加。羊肉是优质动物膳食蛋白的重要来源,风味独特,营养丰富,深受消费者喜爱。盐池滩羊是国家级畜禽资源保护品种,具有耐干旱、抗严寒、耐盐碱和抗逆性强等特征1,其肉质细嫩、不膻不腻和鲜嫩多汁等特点被誉为羊肉界的“劳斯莱斯”2。近年来,随着封山禁牧政策实施,长期圈养使得生活习性改变,以及畜禽肉市场的激烈竞争和过度追求速成肉致使滩羊肉品质下降3。因此,亟须了解滩羊肉的品质特征,明晰肉质的影响因素及其分子调控机制,而目前关于滩羊肉品质影响因素及调控机制的研究报道较少。本研究总结了滩羊肉的营养和风味特征,分别从品种与宿主遗传、营养、饲养模式和瘤胃微生物等方面阐述其对肌内脂肪含量和肌纤维分化的影响及作用机理,分析了瘤胃微生物代谢对滩羊肉质营养和风味的影响,并从“微生物-肠-脑轴”和“微生物-肠-肌肉轴”探讨滩羊胃肠道微生物对肉品质的潜在作用机理, 以期为提升滩羊肉品质提供理论依据。

1 滩羊肉质特征及营养属性

滩羊是肉裘毛兼用的地方特色畜种,长期的自然选择和人工培育形成了鲜嫩多汁、色泽红润、膻味轻且易消化,大理花纹明显且分布均匀的肉质特征3。滩羊肉风味独特,营养丰富,被列为宁夏六大特色产业之一,图1汇总了近年来滩羊相关报道中的肉质营养成分和属性。

2 影响滩羊肉品质的主要因素

肉质性状是衡量畜禽品种经济特征的重要指标之一,其受宿主遗传、营养、环境、饲养管理模式等多因素综合影响。除了以上外在因素之外,肌肉本身的形态结构和化学组成直接决定肌肉品质,其中肌内脂肪(intramuscular fat, IMF)被认为是改善羊肉品质性状的关键因子,其对肉质的嫩度、口感、多汁性和系水力等具有重要影响。另外,通过剖析肌肉组织结构发现肌纤维在运动收缩、结构支撑和能量转化中起核心作用,是另一个提高羊肉品质的重要因素。

2.1 肌内脂肪含量

肌内脂肪是指沉积在肌肉内或肌纤维间的脂肪,其含量与肉质风味、嫩度和多汁性呈正相关9。IMF含量与肌肉组织内脂肪细胞数量相关,肌肉生长与代谢影响肌内脂肪沉积,如肌肉含量多或糖酵解活性高的组织IMF含量较少10,Zhang等11证明滩羊肌肉中的总纤维数与IMF含量呈负相关。IMF是一种高度可遗传性状,受多个基因的复杂调控,滩羊IMF受到ADIPOQFABP4PLIN1PPARGC1A等的正向调控11。近年发现,表观遗传因子miRNA对草食动物的肌内脂肪也有重要调节作用,如miR-27a通过靶向CPT1B抑制绵羊前脂肪细胞的增殖而负调控IMF合成12,miR-340-5p和miR124-3p通过靶向ATF7调节支链氨基酸的分解代谢负调控脂肪合成13。性别也会影响IMF含量,雌性滩羊的脂肪沉积性能优于雄性滩羊14。另外,研究表明,哺乳动物脂肪沉积与厚壁菌门/拟杆菌门的高比例呈正相关,在其他反刍动物中也发现瘤胃微生物丰度在脂肪沉积中发挥重要作用,Xiong等15证明了牦牛瘤胃微生物在脂肪沉积中的相关性,瘤胃微生物通过代谢产生短链脂肪酸(short chain fatty acids, SCFAs)调节胰岛素水平促进脂肪沉积。Wang等16利用数量遗传学分析方法剖析宿主遗传和瘤胃微生物对湖羊体重增加的贡献,并通过微生物全基因组关联分析(microbial genome-wide association study, mGWAS)发现毛螺菌属(Lachnospiraceae ND3007 group)通过发酵产生挥发性脂肪酸直接或间接使湖羊体重增加。 尽管肌内脂肪含量影响盐池滩羊肉质风味的报道较少,但基于其他畜禽的研究报道,本研究推测盐池滩羊肌内脂肪含量会影响肉质风味(表1),且肌内脂肪沉积可能由宿主遗传和瘤胃微生物共同影响。

2.2 肌纤维分化和类型

骨骼肌由不同肌肉纤维组成,肌纤维类型的比重是影响肉品质最重要的因素之一。研究表明Ⅰ型肌肉纤维比例增加能延缓pH降低的速度,提高羊肉的系水力、多汁性和风味25。肌纤维数量在动物出生后已基本恒定,在动物生长发育过程中,基因和转录因子的时空特异性表达以及机体特定的兴奋及收缩运动,使得不同纤维类型在机体的不同部位之间相互转化并表现出不同的肉质特征26,Cui等27表征了滩羊背最长肌和肱二头肌的差异基因谱,筛选到Ca2+、FoxO和AMPK信号通路以及FBXL5等8个参与肌纤维分化的关键基因,并证实了circ_0017336-miR-23a-FBXL5调控网络在肌纤维分化中的重要调控作用。Gao等28探究不同放牧时间对滩羊肉品质的影响,发现放牧时间越长,肉品质更优良,肌肉色泽稳定;日粮中添加1.0%(干物质基础)能降低滩羊Ⅱa型肌纤维和Ⅱb型肌纤维比例,增加肌肉持水力29;饲粮中添加黄芪多糖能增加滩羊粗纤维的生长,改善屠宰性能17。低水平的甲状腺激素会导致 MHC 亚型由快速向缓慢转变:MHC IIB→MHC IIX→MHC IIA→ MHC I 26,但目前尚未有相关激素对滩羊肉品质影响的研究报道。 另外,瘤胃微生物对肌纤维类型转化也可能具有重要影响,Liu等30开展的体内试验,在苏尼特羔羊饲料中添加益生菌(植物乳杆菌HM-10和干酪乳杆菌)调节瘤胃菌群丰度,发现I型肌纤维比例显著增加。

3 滩羊肉质调控机制研究进展

通过改变肌内脂肪沉积和肌肉纤维类型转化提高羊肉品质已成为肉品科学和畜牧业生产领域的研究热点,进一步探究骨骼肌生长发育机理为肉品质提升和遗传改良奠定理论依据。本部分从转录因子、基因参与重要信号通路的调控和瘤胃微生物代谢调控两方面探讨滩羊优良肉品质的可能发生机制。

3.1 分子调控机制

肌内脂肪和肌纤维类型组成都属于中等遗传性状。Ma等31使用Illumina Ovine SNP 600 K BeadChip对滩羊的拷贝数变异(copy number variation, CNV)进行全基因组检测,发现主要变异与脂质代谢相关,且主要富集于AMPK信号通路、Notch信号通路和VEGF信号通路中,推测可能通过调控肌内前体脂肪细胞分化影响脂肪沉积。AMPK被视为促进反刍动物(牛、羊)大理花纹生成的分子靶标32-33,AMPK能调节C/EBPβ、PPARγ、C/EBPα的表达效应生成脂肪34,血管内皮生长因子(vascular endothelial growth factor, VEGF)是调控血管生成的重要因子,通过激活Akt/mTOR诱导角质形成细胞和血管平滑肌细胞等35-36。Ca2+、FoxO和AMPK信号通路调控 ACACB、ATP6V0A1、ASAH1、EFHB、MYL3、SFSWAP 和 FBXL5作用于滩羊肌纤维分化中27。 Wnt信号通路在脂肪沉积和肌纤维转化过程中起重要作用,I型纤维转化主要基于Wnt/Ca2+和Wnt/PI3K信号通路调节T细胞核受体(nuclear factor of activated T-cells,NFAT)促进/诱导慢型肌纤维转化37,调节肌肉生长抑制蛋白(myostatin, MSTN)、脂肪酸结合蛋白(heart-type fatty acid binding protein, H-FABP)和钙蛋白酶抑制蛋白(calpain small subunit, CAST)的活性38图2)。研究发现,MicroRNA介导的转录后调控参与IMF生成具有重要作用。miR-27b可靶向结合PPARγ调控脂肪沉积,miR-30b可促进脂肪前体细胞增殖分化27

3.2 瘤胃微生物作用机制

动物是由宿主和共栖微生物构成的“共同体”,瘤胃微生物代谢产生SCFAs、胆汁酸等活性物质通过直接或间接调控宿主的免疫防御、营养吸收和生产性能发挥,维护宿主健康稳态。反刍动物的瘤胃中定殖着数以万计的微生物,包括原核生物(细菌和古菌)和真核生物(真菌和原虫),它们能将人类无法消化食用的植物源木质纤维素等非均质聚合物转化为高营养的肉、蛋和奶等供人类食用。研究表明,单胃动物肠道微生物与肉品质密切相关,本节结合盐池滩羊以及其他反刍动物的研究进展,阐述瘤胃微生物可能对肉质机理的影响。

3.2.1 饲粮改善盐池滩羊肉质的作用机制

牧草是反刍动物获取营养物质的重要来源,是改善动物肉品质和风味的重要途径。盐池地处荒漠草原,属典型的大陆性季风气候,日照长且昼夜温差大的特点益于牧草中脂肪酸沉积39(牧草中的脂肪酸类型如图3所示)。日粮中营养组分影响肉中脂肪酸成分,滩羊采食富含多不饱和脂肪酸(polyunsaturated fatty acids, PUFAs)的植被利于其在肉中沉积。PUFAs含有多种风味前体,食用后也能降低心血管类疾病、糖尿病、肿瘤的发病率40。此外,牧草中富含单宁、白藜芦醇、黄酮等生物活性物质可通过调节瘤胃微生物多样性和生物发生途径改善肉品质重要营养和风味前体物质的合成。生物氢化作用是瘤胃微生物降低不饱和脂肪酸毒性的生物过程,通过加氢反应降低肉质中不饱和脂肪酸含量,劣化肉质风味。单宁通过降低丁酸弧菌属的菌群丰度抑制生物氢化反应,增加瘤胃液中活性物质C18:1 t11(牛痘酸, vaccenic acid,VA)和C18:2 c9-t11(瘤胃酸, rumen acid, RA)含量以及支链脂肪酸(branched-chain fatty acids, BCFA)浓度41。白藜芦醇(Resveratrol)可激活去乙酰化酶1(sirtuin 1, SIRT1),抑制AMP激酶信号通路(AMP-activated protein kinase, AMPK)促进脂肪沉积42。日粮中添加沙棘(Hippophae rhamnoides)果渣通过促进转录因子ZNF423、PPARγ和C/EBPα表达,提高ACC和FAS酶活性,促进甘油三酯合成,增加羊肉IMF沉积43。上述研究结果表明,日粮通过调节瘤胃菌群丰度和生物发生过程,改善肉质脂肪酸谱,提高不饱和脂肪酸含量,另一方面,饲粮中的生物活性物质可作用于脂质生物合成关键基因影响脂质生物合成过程。

3.2.2 饲养模式影响胃肠道功能及滩羊肉品质

饲养模式是影响动物肉品质的重要因素。Wang等44发现放牧组滩羊的瘦肉率显著高于舍饲组,且肉质中甜味氨基酸(Gly、Ala、Ser和Thr)和鲜味氨基酸(Glu和Asp)含量以及ω-3多不饱和脂肪酸(ω-3 PUFA)含量高于舍饲组。郭帅等45研究表明,舍饲组滩羊的肌内脂肪含量、嫩度以及pH稳定性明显优于放牧组。Gao等28研究发现长期放牧利于滩羊肉色的形成和稳定。饲喂模式引起的肉品质风味差异与瘤胃功能代谢相关。Zhang等46研究表明不同饲喂方式的滩羊瘤胃微生物存在显著差异,放牧组中拟杆菌门和普雷沃氏菌门的丰度低于舍饲组,其中拟杆菌能利用植物纤维发酵产生丙酸和丁酸,在小鼠中已被证实丁酸盐是一种AMPK激活剂,通过级联调控抑制肝脏(ACC1和SREBP1)和腹部脂肪(FAS、PPARγ和LPL)中脂肪生成基因的表达,阻遏脂肪沉积47。厚壁菌门是舍饲组的优势菌群,其与动物的脂肪沉积呈正相关48。舍饲组富集着多种与生物氢化作用相关的细菌,Butyrivibrio属和Pseudobutyrivibrio属能分泌cis-9,trans-11共轭亚油酸异构酶或还原酶参与亚油酸、亚麻酸等共轭脂肪酸的生物氢化,进而影响肉质中脂肪酸组成和肉质风味44-49图4)。故舍饲有利于脂肪沉积和生产性能发挥,而放牧更利于生产优质风味营养的肉质。另外,圈养饲喂可能会导致动物恐惧、焦虑等应激行为,影响胃肠道微生物结构与功能,可能通过“微生物-肠-脑轴”等远端调控途径影响机体代谢,影响肌内脂肪沉积与肌纤维分化调控羊肉性状,但仍需进一步研究证实。

3.2.3 瘤胃微生物代谢对滩羊肉品质的潜在作用机制

胃肠道是动物消化食物、吸收营养的场所,反刍动物瘤胃发酵产生的SCFA不仅是宿主代谢活动的能源物质,同时也是连接瘤胃与机体代谢互作的媒介,参与糖代谢、蛋白质合成和脂肪沉积等。目前,瘤胃微生物对肉品质的调控主要聚焦于“微生物-肠-脑轴”和“微生物-肠-肌肉轴”介导肌内脂肪沉积、肌纤维类型转化调控1030,可能的作用模式如图5所示。SCFAs为主要效应信号分子,通过循环系统调节脂肪酸结合蛋白(fatty acid binding protein, FABP)、肉碱棕榈酰转移酶 2(carnitine palmitoyltransferase 2, CPT2)、脂肪酸合成酶(fatty acid synthase, FASN)、硬脂酰辅酶A去饱和酶(stearoyl-CoA desaturase, SCD)和乙酰辅酶A羧化酶(acetyl-CoA carboxylase, ACC)等脂肪代谢相关蛋白的表达活性,促进脂肪酸从头合成50,SCFAs经血液循环至肌肉组织中,激活过氧化物酶体增生物激活受体γ(peroxisome proliferator-activated receptorγ, PPARγ),选择性诱导FABP3和CPT1表达调控脂肪酸摄取和β氧化51, 影响肌肉特征与脂肪沉积;瘤胃代谢产生短链脂肪酸或神经递质前体,如乙酰胆碱,可调节神经系统促进胰岛素分泌,通过高表达胆固醇调节元件结合蛋白1(sterol regulatory element-binding protein 1, SREBP1)等间接促进肝脏中脂肪酸合成和肌肉中脂肪沉积。另外,细菌分泌的内毒素也会对肌肉发育产生影响。研究发现LPS水平升高与骨骼肌收缩丧失相关,这可能是LPS激活了肌肉蛋白的泛素-蛋白酶体分解途径导致诱发萎缩52。LPS通过TLR-NF-κB和自分泌/旁分泌TNF-α途径抑制成肌分化蛋白(myoblast determination protein, MyoD)和肌生成素表达,上调MSTN表达进而抑制C2C12细胞分化, 且LPS对肌肉分化的抑制作用表现出浓度依赖性53。因此,调控瘤胃菌群稳态对于反刍动物肉质风味提升和改善肌肉发育都具有重要作用。

4 小结与展望

综上所述,盐池滩羊肉质鲜嫩,膻味轻且大理花纹明显等优良肉质性状是由宿主遗传、饮食和饲喂方式等共同作用于肌内脂肪沉积和肌纤维转化的结果,其中瘤胃微生物直接或间接调节肌肉脂肪酸谱和肌肉发育,影响肉质风味和营养价值。关于影响滩羊肌内脂肪沉积和肌纤维分化的转录因子和代谢通路已取得了一些研究进展,这些研究为进一步提升滩羊肉品质提供理论依据。然而,早期滩羊以优良裘皮生产著称,对于肉质的研究进展较慢。有关优良滩羊肉品质提升,以及饮食、环境、管理和宿主遗传之间的互作对于肉质性状改善存在一些需要进一步探究的关键科学问题和挑战,主要包括: 1)精准育种技术的开发。基因组测序技术挖掘与性状密切相关的遗传变异是家畜育种与肉质性状改良的重要途径,应用选择信号法、全基因关联分析和全基因选择分析、筛选及定位肉质性状相关变异,构建完善育种模型以选育优良性状; 2)多组学联合分析滩羊肉质性状代谢分子机制。对于肉品质研究,肌纤维类型、脂肪酸和氨基酸组成以及肌内脂肪沉积相关代谢物等影响肉质风味和嫩度的因素都应纳入肉质评价指标中,并需要将风味组、代谢组、脂质组等多组学技术与基因组联合应用,筛选与滩羊肉品质和嫩度相关的候选基因和靶标代谢物,构建基因的调控网络,揭示营养物质的肉质调控机理和分子作用途径,从候选基因的转录前、转录后和表观遗传方面探究滩羊肉质调控机制。3)精细化经营模式开发。饲料组分与饲养模式都是影响滩羊肉品质的重要因素,以滩羊生长阶段为时间轴,合理调整营养成分与饲养模式,构建高品质优质滩羊肉的管理模式。4)关注瘤胃微生物对肉品质、风味的贡献。瘤胃微生物对于饲料消化利用、能量物质转化、脂肪沉积和肉质风味都具有重要影响,关于瘤胃微生物对滩羊肉品质性状影响的研究较少,也尚未有详细报道有关瘤胃微生物的作用途径和机理。总之,从宿主遗传、营养和饲喂管理模式以及瘤胃微生物4方面开展滩羊肉品质研究,筛选影响肉品质的分子标记,深入探究候选基因的表达与功能,是未来滩羊肉品质改善的重要方向。

参考文献

[1]

Zhu W J, Zhang J Q. Analysis on the development status of Tan sheep industry in Yanchi, Ningxia. Modern Animal Husbandry Science and Technology, 2016, 4(9): 3-4.

[2]

朱雯静, 张吉清. 宁夏盐池滩羊产业发展现状分析. 现代畜牧科技, 2016, 4(9): 3-4.

[3]

Wang Y R, Bai S, Luo R M, et al. Effects of roasting on the content of fatty acids, amino acids and nucleotides of Tan mutton from Ningxia. Journal of Chinese Institute of Food Science and Technology, 2023, 12(3): 289-302.

[4]

王永瑞, 柏霜, 罗瑞明, 焙烤对宁夏滩羊肉脂肪酸、氨基酸及核苷酸含量的影响. 中国食品学报, 2023, 12(3): 289-302.

[5]

Liu Z F, Chen X, Tian J Y. Protection and utilization of genetic resources of Tan sheep in Ningxia. China Livestock and Poultry Breeding Industry, 2023, 19(9): 27-31.

[6]

刘占发, 陈信, 田进阳. 宁夏滩羊遗传资源保护利用案例. 中国畜禽种业, 2023, 19(9): 27-31.

[7]

Li J, Tang C H, Yang Y Y, et al. Characterization of meat quality traits, fatty acids and volatile compounds in Hu and Tan sheep. Frontiers in Nutrition, 2023, 10(4): 13-21.

[8]

Wang F. Comparison and analysis of quality of different varieties, months and parts of sheep meat. Lanzhou: Gansu Agricultural University, 2021.

[9]

王芳. 不同品种、月龄和部位绵羊肉品质的比较与分析. 兰州: 甘肃农业大学, 2021.

[10]

Bu N, Yang Q, Chen J, et al. Characterization and discrimination of volatile compounds in chilled Tan mutton meat during storage using HiSorb-TD-GC-MS and E-Nose. Molecules, 2023, 28(13): 23-41.

[11]

Hou Y, Wang X, Yang D, et al. Investigation tracing the origin of Tan sheep visceral tissues through mineral elements. Foods, 2023, 12(13): 34-51.

[12]

Qin P L, Hu Y G. Analysis and evaluation of nutritional quality of Yanchi Tan mutton. Food Industry of China, 2023 (8): 103-105.

[13]

秦培伦, 胡永刚. 盐池滩羊肉营养品质分析与评价. 中国食品工业, 2023(8): 103-105.

[14]

Pannier L, Gardner G E, O'reilly R A, et al. Factors affecting lamb eating quality and the potential for their integration into an MSA sheep meat grading model. Meat Science, 2018, 144(4): 43-52.

[15]

Hocquette J F, Gondret F, Baeza E, et al. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal, 2010, 4(2): 303-319.

[16]

Zhang X Y, Liu C Y, Kong Y Y, et al. Effects of intramuscular fat on meat quality and its regulation mechanism in Tan sheep. Frontiers in Nutrition, 2022, 9(1): 19-32.

[17]

Li B, Huang X Y, Yang C, et al. miR-27a regulates sheep adipocyte differentiation by targeting CPT1B gene. Animals (Basel), 2021, 12(1): 25-29.

[18]

Liu H D, Li B J, Qiao L Y, et al. miR-340-5p inhibits sheep adipocyte differentiation by targeting ATF7. Animal Science Journal, 2020, 91(1):34-46.

[19]

Jin Y Y, Ma Y J. Analysis of fat deposition and body fat percentage in Tan sheep of different genders. Chinese Journal of Herbivores Science, 2022, 42(5): 71-74.

[20]

靳燕婴, 马友记. 不同性别滩羊脂肪沉积和体脂率差异分析. 中国草食动物科学, 2022, 42(5): 71-74.

[21]

Xiong L, Yao X Y, Pei J, et al. Do microbial-gut-muscle mediated by SCFAs, microbial-gut-brain axis mediated by insulin simultaneously regulate yak IMF deposition? International Journal of Biology Macromolecules, 2024, 257(Pt 1): 128-141.

[22]

Wang W, Zhang Y, Zhang X, et al. Heritability and recursive influence of host genetics on the rumen microbiota drive body weight variance in male Hu sheep lambs. Microbiome, 2023, 11(1): 197-210.

[23]

Zhang Q E, Yang K, Zhou Y X. Effects of dietary supplementation of licorice on the flavor of Tan sheep and mutton in house feeding. Heilongjiang Animal Science and Veterinary Medicine, 2008(9): 36-37.

[24]

张巧娥, 杨库, 周玉香. 日粮中补充甘草对舍饲滩羊羊肉风味的影响. 黑龙江畜牧兽医, 2008(9): 36-37.

[25]

Li J B, Wang X Q, Zhang Z C, et al. Effect of Caragana korshinskii Kom. on meat quality of adipose tissue, volatile fatty acids and the microbiota in gastrointestinal tract for Tan sheep. Science and Technology of Food Industry, 2023, 44(9): 96-103.

[26]

李家博, 王小琪, 张志超, 柠条对滩羊肉品质、胃肠道挥发性脂肪酸及其菌群的影响. 食品工业科技, 2023, 44(9): 96-103.

[27]

Ma N, Xu C, Li T, et al. Effects of adding Caragana korshinskii in pelleted diet on growth performance, blood biochemical indicators, ruminal fermentation and mutton quality of Tan sheep. Animal Husbandry and Feed Science, 2021, 42(3): 14-28.

[28]

马宁, 许迟, 李涛, 颗粒日粮中添加柠条对滩羊生长性能、血液生化指标、瘤胃发酵及羊肉品质的影响. 畜牧与饲料科学, 2021, 42(3): 14-28.

[29]

Liu C F, Kang Y M, Li A H. Effects of dietary thyme supplementation on fatty acids in Tan sheep meat. Feed Industry, 2014, 35(19): 33-38.

[30]

刘彩凤, 康艳梅, 李爱华. 日粮中添加百里香对滩羊肉中脂肪酸的影响. 饲料工业, 2014, 35(19): 33-38.

[31]

Kang Y M, Li A H, Yang Z F. Effects of dietary thyme on muscle concentrations of inosine acid and inosine in Tan sheep. Animal Husbandry and Veterinary Medicine, 2015, 47(3): 18-23.

[32]

康艳梅, 李爱华, 杨志峰. 日粮中添加百里香对滩羊肉中肌苷酸和肌苷含量的影响. 畜牧与兽医, 2015, 47(3): 18-23.

[33]

Gao Y C, Huang L J, Li Y C, et al. Effects of Astragalus polysaccharides on growth performance, slaughter performance, meat quality and serum biochemical, antioxidant indices of fattening Tan sheep. Heilongjiang Animal Husbandry and Veterinary Science, 2023, 6(16): 103-107.

[34]

高燕程, 黄立军, 李延翠, 黄芪多糖对育肥滩羊生长性能、屠宰性能、肉品质及血清生化、抗氧化指标的影响. 黑龙江畜牧兽医, 2023, 6(16): 103-107.

[35]

Ma X M. Study on molecular mechanism of meat quality characteristics and regulation of Tan sheep. Lanzhou: Gansu Agricultural University, 2022.

[36]

马小明. 滩羊肉品质特性与调控的分子机制研究. 兰州: 甘肃农业大学, 2022.

[37]

Guo J. Screening of genes related to effects of alophora on meat quality of Tan sheep and functional analysis of ACSL3 gene. Yinchuan: Ningxia University, 2022.

[38]

郭菊. 苦豆子影响滩羊肉品质相关基因的筛选及ACSL3基因功能分析. 银川: 宁夏大学, 2022.

[39]

Hwang Y H, Bakhsh A, Lee J G, et al. Differences in muscle fiber characteristics and meat quality by muscle type and age of Korean native black goat. Food Science of Animal Resources, 2019, 39(6): 988-999.

[40]

Joo S T, Kim G D, Hwang Y H, et al. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 2013, 95(4): 828-836.

[41]

Cui R, Kang X, Liu Y, et al. Integrated analysis of the whole transcriptome of skeletal muscle reveals the ceRNA regulatory network related to the formation of muscle fibers in Tan sheep. Frontiers in Genetics, 2022, 13(3): 99-112.

[42]

Gao X, Wang Z, Miao J, et al. Influence of different production strategies on the stability of color, oxygen consumption and metmyoglobin reducing activity of meat from Ningxia Tan sheep. Meat Science, 2014, 96(2 Pt A): 769-774.

[43]

Zhang N, Kang Y, Ren W Y, et al. Effects of dietary succinic acid on meat quality and muscle fiber type of Tan sheep. Chinese Journal of Animal Nutrition, 2023, 35(10): 6538-6545.

[44]

张宁, 康燕, 任文义, 饲粮添加琥珀酸对滩羊肉品质及肌纤维类型的影响. 动物营养学报, 2023, 35(10): 6538-6545.

[45]

Liu T, Bai Y, Wang C, et al. Effects of probiotics supplementation on the intestinal metabolites, muscle fiber properties, and meat quality of Sunit lamb. Animals (Basel), 2023, 13(4): 19-25.

[46]

Ma Q, Liu X, Pan J, et al. Genome-wide detection of copy number variation in Chinese indigenous sheep using an ovine high-density 600 K SNP array. Scientific Reports, 2017, 7(1): 912-923.

[47]

Underwood K R, Means W J, Zhu M J, et al. AMP-activated protein kinase is negatively associated with intramuscular fat content in longissimus dorsi muscle of beef cattle. Meat Science, 2008, 79(2): 394-402.

[48]

Wen Y, Li S, Bao G, et al. Comparative transcriptome analysis reveals the mechanism associated with dynamic changes in meat quality of the longissimus thoracis muscle in Tibetan sheep at different growth stages. Frontiers in Veterinary Science, 2022, 9(3): 5-14.

[49]

Tong J, Zhu M J, Underwood K R, et al. AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. Journal of Animal Science, 2008, 86(6): 1296-1305.

[50]

Dulak J, Jozkowicz A. Regulation of vascular endothelial growth factor synthesis by nitric oxide: facts and controversies. Antioxidants & Redox Signaling, 2003, 5(1): 123-132.

[51]

Zmudzka M, Zoladz J A, Majerczak J. The impact of aging and physical training on angiogenesis in the musculoskeletal system. PeerJ, 2022, 10(5): 42-57.

[52]

Mccarron J G, Saunter C, Wilson C, et al. Mitochondria structure and position in the local control of calcium signals in smooth muscle cells//In: Signal transduction and smooth muscle. UK: Oxon, 2018, 4(1): 173-190.

[53]

H E, Ma L, Xie X, et al. Genetic polymorphism association analysis of SNPs on the species conservation genes of Tan sheep and Hu sheep. Tropical Animal Health and Production, 2020, 52(3): 915-926.

[54]

Feng F, Li H, Yang J, et al. Fatty acid composition and contents in typical herbages from desert grassland of Ningxia region. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(1): 108-114.

[55]

冯帆, 李昊, 杨洁, 宁夏荒漠化草场代表性牧草的脂肪酸组成及含量. 福建农林大学学报(自然科学版), 2021, 50(1): 108-114.

[56]

Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science and Technology, 2018, 9(4): 345-381.

[57]

Boeckaert C, Vlaeminck B, Fievez V, et al. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Applied and Environmental Microbiology, 2008, 74(22): 6923-6930.

[58]

Ponugoti B, Kim D H, Xiao Z, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. Journal of Biological Chemistry, 2010, 285(44): 33959-33970.

[59]

Deng B H, Qin X Z, Zhang T, et al. Effect of dietary seabuckthorn pomace supplementation on intramuscular fat deposition related gene expression and enzyme activity in lambs. Acta Laser Biology Sinica, 2020, 29(5): 475-481.

[60]

邓步皓, 秦旭泽, 张婷, 日粮中添加沙棘果渣对肉羊肌内脂肪沉积及其关键基因和酶活力的影响. 激光生物学报, 2020, 29(5): 475-481.

[61]

Wang B, Wang Y, Zuo S, et al. Untargeted and targeted metabolomics profiling of muscle reveals enhanced meat quality in artificial pasture grazing Tan lambs via rescheduling the rumen bacterial community. Journal of Agricultural and Food Chemistry, 2021, 69(2): 846-858.

[62]

Guo S, Yang H C, Li R G, et al. Effects of grazing and housing feeding patterns on meat quality, rumen environment and microflora structure of Tan sheep. Southwest Journal of Agricultural Sciences, 2023, 36(8): 1798-1807.

[63]

郭帅, 杨慧超, 李瑞国, 放牧与舍饲模式对滩羊肉品质、瘤胃环境及菌群结构的影响. 西南农业学报, 2023, 36(8): 1798-1807.

[64]

Zhang L, Ren W, Bi Y, et al. Effects of different feeding patterns on the rumen bacterial community of Tan lambs, based on high-throughput sequencing of 16S rRNA amplicons. Frontiers in Microbiology, 2023, 14(2): 29-34.

[65]

Liu H Y, Walden T B, Cai D, et al. Dietary fiber in bilberry ameliorates pre-obesity events in rats by regulating lipid depot, cecal short-chain fatty acid formation and microbiota composition. Nutrients, 2019, 11(6): 23-41.

[66]

Fernandez-Turren G, Repetto J L, Arroyo J M, et al. Lamb fattening under intensive pasture-based systems: A Review. Animals (Basel), 2020, 10(3): 34-45.

[67]

Cai D, Wang J, Jia Y, et al. Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms. Acta Biochimica et Biophysica Sinica, 2016, 1861(1): 41-50.

[68]

Dervishi E, Serrano C, Joy M, et al. The effect of feeding system in the expression of genes related with fat metabolism in semitendinous muscle in sheep. Meat Science, 2011, 89(1): 91-97.

[69]

Christofides A, Konstantinidou E, Jani C, et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism, 2021, 114(6): 89-99.

[70]

Lin S Y, Wang Y Y, Chuang Y H, et al. Skeletal muscle proteolysis is associated with sympathetic activation and TNF-alpha-ubiquitin-proteasome pathway in liver cirrhotic rats. Journal of Gastroenterology and Hepatology, 2016, 31(4): 890-896.

[71]

Ono Y, Sakamoto K. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α. PLoS One, 2017, 12(7): 40-59.

基金资助

宁夏自然科学基金重点项目(2023AAC02013)

国家自然科学基金面上项目(32172725)

AI Summary AI Mindmap
PDF (3311KB)

725

访问

0

被引

详细

导航
相关文章

AI思维导图

/