三株丹参根内生细菌对宿主生长及药用品质的影响
马召 , 李晓帆 , 孙莉琼 , 黄智 , 许垒 , 鲁霆 , 唐晓清 , 王康才
草业学报 ›› 2025, Vol. 34 ›› Issue (04) : 175 -188.
三株丹参根内生细菌对宿主生长及药用品质的影响
Effects of three endophytic bacteria in the roots of Salvia miltiorrhiza on host growth and medicinal quality
采用盆栽试验研究3株内生细菌对丹参生长、生理及药用品质的影响,为丹参微生物肥料的开发提供备选菌种资源。将从丹参根部分离出的3株内生菌(Mesorhizobium amorphae B546、Bacillus thuringiensis NB49、B. thuringiensis Bt12)对其幼苗进行灌根处理,测定处理后不同时间(7、14、28、42、56 d)的生长和生理指标,并于采收期测定其根内8种活性成分含量。结果表明,3株内生菌均可显著促进丹参生物量的积累,处理56 d后,主根直径、地上及地下部分干重均较对照(CK)显著增加(P<0.05),为CK的1.21~2.49倍。内生菌处理对丹参的生理指标具有显著影响,其中B. thuringiensis Bt12的促进效果最佳,在处理42 d后,可溶性糖、可溶性蛋白、总叶绿素、玉米素(ZT)、6-苄氨基嘌呤(6-BA)和生长素(IAA)为CK 的1.36~2.18倍。3株内生菌对丹参活性成分的积累有不同影响,其中B. thuringiensis Bt12可显著促进总丹参酮及总丹酚酸的积累,含量分别为CK的2.10和1.37倍;M. amorphae B546与B. thuringiensis NB49能促进总丹参酮的积累,含量分别为CK的1.08和1.34倍,但抑制了酚酸类物质的合成,总酚酸含量分别为CK 的92.21%和69.29%。因此,供试的3株丹参内生菌对丹参的生长、生理代谢和活性成分的积累均具有显著影响,其中以B. thuringiensis Bt12的促进效果最为显著,可作为丹参专用微生物肥料开发的备选菌种资源。
A pot experiment was conducted to study the effects of three endophytic bacteria on the growth, physiology, and medicinal quality of Salvia miltiorrhiza. The ultimate aim of this research was to identify bacteria suitable for the development of microbial fertilizers for S. miltiorrhiza. Three endophytic bacteria (Mesorhizobium amorphae B546, Bacillus thuringiensis NB49, and B. thuringiensis Bt12) isolated from the roots of S. miltiorrhiza were applied to seedlings via root irrigation. The growth and physiological indicators were measured at different times (7, 14, 28, 42, 56 d) after treatment, and the contents of eight active ingredients in the roots were determined at harvest. It was found that all three endophytic bacteria significantly promoted the accumulation of S. miltiorrhiza biomass. After 56 days of growth, the diameter of the main root and the dry weight of the above ground and underground parts were significantly higher (by 1.21-2.49 times) in all the treatments than in the uninoculated control (CK) (P<0.05). The endophytic bacterial treatments had a significant impact on the physiology of S. miltiorrhiza, with B. thuringiensis Bt12 having the best promoting effect. After 42 days of growth, the contents of soluble sugars, soluble proteins, total chlorophyll, zein, 6-benzylaminopurine, and auxin were 1.36- to 2.18-times higher in the treatments than in CK. The three endophytic bacteria strains exerted distinct effects on the accumulation of active components in S.miltiorrhiza. Notably, B. thuringiensis Bt12 significantly enhanced the accumulation of total tanshinone and total salvianolic acid to levels 2.10- and 1.37-times that in CK, respectively. M. amorphae B546 and B. thuringiensis NB49 promoted the accumulation of total tanshinone, to levels 1.08- and 1.34-times that in CK, respectively, but inhibited the accumulation of phenolic acids, with the total phenolic acid content being 92.21% and 69.29% of that in CK, respectively. In summary, the three strains of endophytic bacteria significantly affected the growth, physiological metabolism, and accumulation of active ingredients in S. miltiorrhiza. Among the tested endophytic bacteria, B. thuringiensis Bt12 had the strongest promoting effect. Thus, it has potential applications in the development of specialized microbial fertilizers for S. miltiorrhiza.
Salvia miltiorrhiza / endophytic bacteria / microbial fertilizers / promote growth / medicinal quality
| [1] |
Wang H Y, Kang C Z, Zhang W J, et al. Land use strategy of ecological agriculture of Chinese materia medic in future development. China Journal of Chinese Materia Medica, 2020, 45(9): 1990-1995. |
| [2] |
王红阳, 康传志, 张文晋, 中药生态农业发展的土地利用策略. 中国中药杂志, 2020, 45(9): 1990-1995. |
| [3] |
Wang H Y, Kang C Z, Wang Y F, et al. Medicinal plant microbiome: advances and prospects. China Journal of Chinese Materia Medica, 2022, 47(20): 5397-5405. |
| [4] |
王红阳, 康传志, 王月枫, 药用植物微生物组的研究现状及展望. 中国中药杂志, 2022, 47(20): 5397-5405. |
| [5] |
Shi Y L, Li M, Yang Z G. A brief discussion on the development status and prospect prediction of microbial ecological fertilizer. Inner Mongolia Science Technology and Economy, 2021(19): 21-22. |
| [6] |
石元亮, 李铭, 杨志阁. 浅论微生物生态肥料发展现状及前景预测. 内蒙古科技与经济, 2021(19): 21-22. |
| [7] |
Zhang R F, Shen Q R. Mechanisms of the microbial fertilizer’s novel functions and the strategies to enhance its root colonization. Journal of Microbiology, 2024, 44(1): 1-11. |
| [8] |
张瑞福, 沈其荣. 微生物肥料新型功能作用机理与根际定殖增强策略. 微生物学杂志, 2024, 44(1): 1-11. |
| [9] |
Wu G Q, Yu Z L, Wei M. The mechanism of PGPR regulating plant response to abiotic stress. Acta Prataculturae Sinica, 2024, 33(6): 203-218. |
| [10] |
伍国强, 于祖隆, 魏明. PGPR调控植物响应逆境胁迫的作用机制. 草业学报, 2024, 33(6): 203-218. |
| [11] |
Huang Q, Wei G F, Chang R X, et al. Developmental situation of microbial fertilizer and its application in Chinese medicinal herbs cultivation. Modern Chinese Medicine, 2022, 24(1): 153-159. |
| [12] |
黄钦, 尉广飞, 常瑞雪, 微生物肥料发展现状及其在中药材种植中的应用. 中国现代中药, 2022, 24(1): 153-159. |
| [13] |
National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (one). Beijing: China Medical Technology Press, 2020: 77. |
| [14] |
国家药典委员会. 中华人民共和国药典(一部). 北京: 中国医药科技出版社, 2020: 77. |
| [15] |
Hu T T, Li J Y, Zhai J J, et al. Textual research on Salvia miltiorrhiza. Journal of Liaoning University of Traditional Chinese Medicine, 2023, 25(10): 173-177. |
| [16] |
胡婷婷, 李金洋, 翟俊杰, 丹参本草考证. 辽宁中医药大学学报, 2023, 25(10): 173-177. |
| [17] |
Chen Y M, Li Q, Liu W H, et al. Research progress on pharmacological action, clinical application and side effects of Salvia miltiorrhiza in the treatment of cardiovascular diseases. Pharmaceutical Research, 2023, 42(12): 1028-1034. |
| [18] |
陈雨萌, 李倩, 刘维海, 丹参活性成分治疗心血管疾病的药理作用、临床应用及不良反应研究进展. 药学研究, 2023, 42(12): 1028-1034. |
| [19] |
Liu S, Pu C J, Luo Y Z, et al. Effects of temperature and humidity on infection of Fusarium oxysporum in seedlings of Salvia miltiorrhiza. China Journal of Chinese Materia Medica, 2023, 48(1): 39-44. |
| [20] |
刘莎, 濮春娟, 罗钰枝, 环境温度和湿度对尖孢镰刀菌侵染丹参幼苗的影响. 中国中药杂志, 2023, 48(1): 39-44. |
| [21] |
Wang Z. Study on cultivation problems and related technologies of Salvia miltiorrhiza. Agricultural Technology and Equipment, 2022(3): 100-102. |
| [22] |
王准. 丹参栽培问题及相关技术现状研究. 农业技术与装备, 2022(3): 100-102. |
| [23] |
Chen Z R, Liu X Y, Zhao X D, et al. Research progress on community composition and function of endophytes in plants. Chinese Bulletin of Life Sciences, 2023, 35(2): 132-139. |
| [24] |
陈招荣, 刘新悦, 赵欣迪, 植物内生菌群落组成及其功能研究进展. 生命科学, 2023, 35(2): 132-139. |
| [25] |
Wang G K, Yang J S, Huang Y F, et al. Culture separation, identification and unique anti-pathogenic fungi capacity of endophytic fungi from Gucheng Salvia miltiorrhiza. In Vivo, 2021, 35(1): 325-332. |
| [26] |
Bi J T, Ma P, Yang Z W, et al. Isolation of endophytic fungi from the medicinal plant Tamarix chinensis and their microbial inhibition activity. Acta Prataculturae Sinica, 2013, 22(3): 132-138. |
| [27] |
毕江涛, 马萍, 杨志伟, 药用植物柽柳内生真菌分离及其抑菌活性初步研究. 草业学报, 2013, 22(3): 132-138. |
| [28] |
Duan J L, Li X J, Gao J M, et al. Isolation and identification of endophytic bacteria from root tissues of Salvia miltiorrhiza Bge and determination of their bioactivities. Annals of Microbiology, 2013, 63(4): 1501-1512. |
| [29] |
Kong M M, Yan W, Wang Z Q, et al. The influence of six different drying and processing methods on the content of main components in Salvia miltiorrhiza. Journal of Chinese Medicinal Materials, 2020, 43(4): 847-852. |
| [30] |
孔明明, 燕蔚, 王志强, 六种不同干燥加工方法对丹参主要成分含量的影响. 中药材, 2020, 43(4): 847-852. |
| [31] |
Jia H M, Fang Q, Zhang S H, et al. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza. Acta Prataculturae Sinica, 2020, 29(6): 83-92. |
| [32] |
贾红梅, 方千, 张秫华, AM真菌对丹参生长及根际土壤酶活性的影响. 草业学报, 2020, 29(6): 83-92. |
| [33] |
Wang X K. Principles and techniques of plant physiology and biochemistry experiments. Beijing: Higher Education Press, 2006. |
| [34] |
王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006. |
| [35] |
Zhou X T, Kang L P, Li P Y, et al. Determination of abscisic acid in arbuscular mycorrhizal fungi infected Salvia miltiorrhiza plants by UPLC/MS/MS. Chinese Agricultural Science Bulletin, 2016, 32(12): 92-97. |
| [36] |
周修腾, 康利平, 李鹏英, UPLC-MS/MS测定AM真菌侵染丹参植物脱落酸含量. 中国农学通报, 2016, 32(12): 92-97. |
| [37] |
Pan X Q, Welti R, Wang X M, et al. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols, 2010, 5(6): 986-992. |
| [38] |
Chen Y P, Yang W Y. Determination of GA3, IAA, ABA and ZT in dormant buds of Allium ovalifolium by HPLC. Journal of Sichuan Agricultural University, 2005, 23(4): 498-500. |
| [39] |
陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23(4): 498-500. |
| [40] |
Huang X Z, Zhao L F. Mechanism of endophytes of medicinal plants in promoting the growth of host plants. Microbiology China, 2023, 50(4): 1653-1665. |
| [41] |
黄雪珍, 赵龙飞. 药用植物内生菌对宿主植物促生作用机制研究进展. 微生物学通报, 2023, 50(4): 1653-1665. |
| [42] |
You H, Pu Q, Wen F, et al. Isolation and screening of bacteria strain with ACC deaminase activity and its effect on hairy root of Salvia miltiorrhiza. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2017, 37(5): 720-726. |
| [43] |
尤红, 普倩, 文芳, ACC脱氨酶菌株的分离筛选及对丹参毛状根的影响. 浙江理工大学学报 (自然科学版), 2017, 37(5): 720-726. |
| [44] |
Zheng L L, Chen M L, Kang L P, et al. Effect of Rhizophagus intraradices on growth of Salvia miltiorrhiza. China Journal of Chinese Materia Medica, 2023, 48(2): 349-355. |
| [45] |
郑玲玲, 陈美兰, 康利平, 根内根孢囊霉Rhizophagus intraradices对丹参生长作用的研究. 中国中药杂志, 2023, 48(2): 349-355. |
| [46] |
Song H, Liu J, Song P, et al. Effects of inoculation with endophytic fungi and endophytic bacteria on growth and accumulation of secondary metabolites in Tripterygium wilfordii. Journal of Tropical and Subtropical Botany, 2020, 28(4): 347-355. |
| [47] |
宋欢, 刘洁, 宋萍, 内生真菌和内生细菌接种对雷公藤生长和次生代谢产物积累的影响. 热带亚热带植物学报, 2020, 28(4): 347-355. |
| [48] |
Pinski A, Betekhtin A, Hupert-kocurek K, et al. Defining the genetic basis of plant-endophytic bacteria interactions. International Journal of Molecular Science, 2019, 20(8): 1947. |
| [49] |
Omoarelojie L O, Van Staden J. Plant-endophytic fungi interactions: A strigolactone perspective. South African Journal of Botany, 2020, 134(S1): 280-284. |
| [50] |
Lebeis S L, Paredes S H, Lundberg D S, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349 (6250): 860-864. |
| [51] |
Carvalhais L C, Dennis P G, Badri D V, et al. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS One, 2013, 8(2): 56457. |
| [52] |
Xu L, Wu C, Oelmüller R, et al. Role of phytohormones in Piriformospora indica-induced growth promotion and stress tolerance in plants: More questions than answers. Frontiers in Microbiology, 2018, 9: 1646. |
| [53] |
Waqas M, Khan A L, Shahzad R, et al. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. Journal of Zhejiang University-Science B, 2015, 16(12): 1011-1018. |
| [54] |
Araújo F F, Henning A, Hungria M, et al. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World Journal of Microbiology Biotechnology, 2005, 21(8/9): 1639-1645. |
| [55] |
Kang H Y, Wang W, Liu J L, et al. Isolation and identification of two plant-growth promoting endophytes from alfalfa. Microbiology China, 2015, 42(2): 280-288. |
| [56] |
康慧颖, 王伟, 刘佳莉, 两株具促生作用的苜蓿内生菌的分离纯化与鉴定. 微生物学通报, 2015, 42(2): 280-288. |
| [57] |
Liu R J, Li M, Meng X X, et al. Effects of AM fungi on endogenous hormones in corn and cotton plants. Mycosystema, 2000, 19(1): 91-96. |
| [58] |
刘润进, 李敏, 孟祥霞, 丛枝菌根真菌对玉米和棉花内源激素的影响. 菌物系统, 2000, 19(1): 91-96. |
| [59] |
Yu J X, Li H, Guo S X, et al. Influence of arbuscular mycorrhizal fungi on endogenous hormone levels in tomato plants. Journal of Qingdao Agricultural University (Natural Science), 2010, 27(2): 100-104. |
| [60] |
于建新, 李辉, 郭绍霞, 丛枝菌根真菌对番茄植株内源激素含量的影响. 青岛农业大学学报(自然科学版), 2010, 27(2): 100-104. |
| [61] |
Zhou X T, Wang X, Yang G, et al. Effects of arbuscular mycorrhizal fungi on endogenous hormones in Salvia miltiorrhiza. China Journal of Chinese Materia Medica, 2016, 41(20): 3761-3766. |
| [62] |
周修腾, 王雪, 杨光, 丛枝菌根真菌对丹参内源激素的影响. 中国中药杂志, 2016, 41(20): 3761-3766. |
| [63] |
Taleski M, Chapman K, Novak O, et al. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. Nature Communications, 2023, 14(1): 1683. |
| [64] |
Kurepa J, Smalle J A. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. International Journal of Molecular Science, 2022, 23(4): 1933. |
| [65] |
Duan N, Jia Y K, Xu J, et al. Research progress on plant endogenous hormones. Chinese Agricultural Science Bulletin, 2015, 31(2): 159-165. |
| [66] |
段娜, 贾玉奎, 徐军, 植物内源激素研究进展. 中国农学通报, 2015, 31(2): 159-165. |
| [67] |
Aroca R, Ruiz-Lozano J M, Zamarreño A M, et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 2013, 170(1): 47-55. |
| [68] |
Zhang Y L, Yu Q K, Li W, et al. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
| [69] |
张一龙, 喻启坤, 李雯, 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应. 草业学报, 2023, 32(3): 163-178. |
| [70] |
Hu X, Bai Y, Chen J W, et al. The effect of Trichoderma atroviride on the growth and active ingredient content of the host plant Epimedium koreanum Nakai. Journal of Chinese Medicinal Materials, 2023, 46(9): 2142-2148. |
| [71] |
胡星, 白洋, 陈佳雯, 深绿木霉对宿主植物朝鲜淫羊藿生长及药效成分含量的影响. 中药材, 2023, 46(9): 2142-2148. |
| [72] |
Li H L, Guo D Q, Yang M, et al. Effect of different combinations of arbuscular mycorrhiza on Paris polyphylla var. yunnanensis and chemical components. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(7): 134-143. |
| [73] |
黎海灵, 郭冬琴, 杨敏, 不同丛枝菌根真菌组合对滇重楼光合生理和化学成分的影响. 中国实验方剂学杂志, 2021, 27(7): 134-143. |
| [74] |
Liu L F, Di Y N, He L L, et al. Study on the growth promotion effect and IAA production capacity of Bacillus subtilis B9. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(2): 227-234. |
| [75] |
刘鲁峰, 狄义宁, 何丽莲, 内生枯草芽孢杆菌B9促生长效果及产吲哚乙酸(IAA)能力研究. 云南农业大学学报(自然科学), 2020, 35(2): 227-234. |
| [76] |
Dai X X, Yan C C, Zulihumaer M, et al. Screening and identification of biocontrol bacteria for cotton Verticillium wilt and effect of Rhizobium DG3-1 on cotton growth. Shandong Agricultural Sciences, 2024, 56(5): 138-144. |
| [77] |
代先兴, 闫成才, 祖丽胡玛尔·麦提喀迪尔, 棉花黄萎病生防菌筛选鉴定及根瘤菌DG3-1对棉花生长的影响. 山东农业科学, 2024, 56(5): 138-144. |
| [78] |
Shan Y, Ren X N, Yao Y X, et al. Effect of Suaeda salsa endophyte EF0801 on antioxidant enzymes and chlorophyll fluorescence in rice seedlings infected with rice blast. Southwest China Journal of Agricultural Sciences, 2021, 34(12): 2646-2652. |
| [79] |
单羽, 任晓宁, 姚禹希, 碱蓬内生菌EF0801对感染稻瘟病水稻幼苗抗氧化酶及叶绿素荧光的影响. 西南农业学报, 2021, 34(12): 2646-2652. |
| [80] |
Chen H M, Chen J L, Qi Y, et al. Endophytic fungus Cladosporium tenuissimum DF11, an efficient inducer of tanshinone biosynthesis in Salvia miltiorrhiza roots. Phytochemistry, 2022, 194: 113021. |
| [81] |
Ming Q L, Su C Y, Zheng C J, et al. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. Journal of Experimental Botany, 2013, 64(18): 5687-5694. |
| [82] |
Zhao J L, Lou J F, Mou Y, et al. Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza Bunge and their antimicrobial activities. Molecules, 2011, 16(3): 2259-2267. |
| [83] |
Li X Y, Lin Y L, Qin Y, et al. Beneficial endophytic fungi improve the yield and quality of Salvia miltiorrhiza by performing different ecological functions. PeerJ, 2024, 12: 16959. |
| [84] |
Yan Y, Zhang S C, Zhang J Y, et al. Effect and mechanism of endophytic bacteria on growth and secondary metabolite synthesis in Salvia miltiorrhiza hairy roots. Acta Physiologiae Plantarum, 2014, 36(5): 1095-1105. |
江苏省农业科技自主创新项目[CX(22)3174],中央高校基本科研业务费(KYZZ2022002)
南京农业大学中药全产业链(KYCXJC2023003)
企业合作项目(20231020)
/
| 〈 |
|
〉 |