菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响
魏孔钦 , 张盈盈 , 回金峰 , 马春晖 , 张前兵
草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 40 -50.
菌磷配施对紫花苜蓿根系非结构碳水化合物及碳氮磷化学计量特征的影响
Effect of phosphate-solubilizing bacteria and phosphorus on non-structural carbohydrate content and the carbon∶nitrogen∶phosphorus stoichiometry of alfalfa roots
为揭示磷肥配施解磷细菌对紫花苜蓿根系非结构碳水化合物及化学计量特征的影响,采用双因素完全随机设计,设置了2个施磷(P2O5)水平:0(P0)和100 mg·kg-1(P1),4个接菌处理:不接菌(J0)、单接种胶质芽孢杆菌(J1)、单接种巨大芽孢杆菌(J2)和混合接菌(J3),共8个处理。测定了紫花苜蓿的根系活力、可溶性糖、可溶性蛋白、淀粉、丙二醛、根际土-根系碳(C)、氮(N)、磷(P)含量。双因素方差分析表明:施磷和接菌处理显著改变了紫花苜蓿的根系活力、丙二醛、可溶性糖、淀粉含量、根际土N/P、根系C/N、C/P及N/P(P<0.05),但对根系可溶性蛋白的影响不显著(P>0.05)。进一步分析表明,在相同施磷水平下,与不接菌相比,接种解磷菌提高了紫花苜蓿的根系活力、可溶性糖、可溶性蛋白(除J2P0和J2P1)、淀粉(除J1P1)、根际土-根系C、N、P含量(除J2P1的根系C及J1P0和J2P0的根系N含量)及根际土C/P(除J3P0)和N/P,降低了根际土C/N及根系丙二醛含量(除J1P1和J2P1)。在相同接菌处理下,与不施磷相比,施磷处理提高了紫花苜蓿的根系活力、可溶性糖、可溶性蛋白、淀粉、根际土C、根际土P、根系N及P含量,降低了根系C/N、C/P、N/P、丙二醛及根际土N/P。综合分析表明,不同处理的综合得分依次为:J3P1>J2P1>J1P1>J0P1>J3P0>J2P0>J1P0>J0P0。综上,施磷(100 mg·kg-1)和混合接种胶质芽孢杆菌及巨大芽孢杆菌,可以有效提高紫花苜蓿根际土养分含量并促进根系非结构碳水化合物的积累。
The aim of this study was to determine the effects of phosphorus fertilizer applied with phosphate-solubilizing bacteria on the non-structural carbohydrate content and stoichiometric characteristics of alfalfa (Medicago sativa) roots. An experiment with a two-factor completely randomized design was established with two phosphorus (P2O5) fertilizer levels: 0 (P0) and 100 mg·kg-1 (P1); and four inoculation treatments: no inoculation (J0), single inoculation with Bacillus mucilaginosus (J1), single inoculation with Bacillus megaterium (J2) and mixed inoculation (J3), making a total of eight treatments. The root vigor, contents of soluble sugars, soluble protein, starch, and malondialdehyde, and the contents of carbon (C), nitrogen (N) and phosphorus (P) in the rhizosphere soil and roots of alfalfa were determined. Two-way ANOVA showed that phosphorus application and bacterial inoculation significantly affected the root vigor, the contents of malondialdehyde, soluble sugars, and starch in the roots, rhizosphere soil N∶P, and root C∶N, C∶P, and N∶P (P<0.05), but did not significantly affect the root soluble protein content (P>0.05). Further analyses showed that at the same level of phosphorus application, inoculation with phosphate-solubilizing bacteria increased alfalfa root vigor, soluble sugar content, and soluble protein content (except for J2P0 and J2P1); increased root starch content (except for J1P1); increased rhizosphere soil and root C, N, and P contents (except for root C in J2P1 and root N content in J1P0 and J2P0); and increased rhizosphere soil C∶P (except for J3P0) and N∶P; but reduced the rhizosphere soil C∶N and root malondialdehyde content (except for J1P1 and J2P1). Under the same inoculation treatment, phosphorus application increased root vigor and the contents of soluble sugars, soluble protein, and starch in the roots, increased rhizosphere soil C and P and root N and P contents, and decreased root C∶N, C∶P, N∶P, malondialdehyde content, and rhizosphere soil N∶P, compared with their respective values in the no-phosphorus control. On the basis of these comprehensive analyses, the treatments could be ranked, from the highest composite score to lowest, as follows: J3P1>J2P1>J1P1>J0P1>J3P0>J2P0>J1P0>J0P0. In conclusion, phosphorus application (100 mg·kg-1) and mixed inoculation with B. mucilaginosus and B. megaterium effectively increased the nutrient content of alfalfa rhizosphere soil and increased the accumulation of non-structural carbohydrates in alfalfa roots.
解磷细菌 / 磷 / 紫花苜蓿 / 非结构碳水化合物 / 化学计量特征
phosphate-solubilizing bacteria / phosphorus / alfalfa / non-structural carbohydrates / stoichiometry
| [1] |
Guo T, Xue B, Bai J, et al. Discussion of the present situation of China’s forage grass industry development: An example using alfalfa and oats. Pratacultural Science, 2019, 36(5): 1466-1473. |
| [2] |
郭婷, 薛彪, 白娟, 刍议中国牧草产业发展现状-以苜蓿、燕麦为例. 草业科学, 2019, 36(5): 1466-1473. |
| [3] |
Zhang W H, Hou L Y, Yang J, et al. Establishment and management of alfalfa pasture in cold regions of China. Chinese Science Bulletin, 2018, 63(17): 1651-1663. |
| [4] |
张文浩, 侯龙鱼, 杨杰, 高寒地区苜蓿人工草地建植技术. 科学通报, 2018, 63(17): 1651-1663. |
| [5] |
Hakl J, Kunzová E, Tocauerová Š, et al. Impact of long-term manure and mineral fertilization on yield and nutritive value of lucerne (Medicago sativa) in relation to changes in canopy structure. European Journal of Agronomy, 2021, 123: 126219. |
| [6] |
Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu, China. Acta Prataculturae Sinica, 2016, 25(12): 76-83. |
| [7] |
段兵红, 陆姣云, 刘敏国, 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系. 草业学报, 2016, 25(12): 76-83. |
| [8] |
Francisquini J A, Calonego J C, Rosolem C A, et al. Increase of nitrogen-use efficiency by phosphorus fertilization in grass-legume pastures. Nutrient Cycling in Agroecosystems, 2020, 118(2): 165-175. |
| [9] |
Yu T F, Liu X J, Hao F. Effect of phosphate fertilizer application on alfalfa yield, nutritive value and N and P use efficiency. Acta Prataculturae Sinica, 2018, 27(3): 154-163. |
| [10] |
于铁峰, 刘晓静, 郝凤. 施用磷肥对紫花苜蓿营养价值和氮磷利用效率的影响. 草业学报, 2018, 27(3): 154-163. |
| [11] |
Ma Y, Cheng Y Y, Shi X J, et al. Phosphate-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers. Acta Microbiologica Sinica, 2023, 63(12): 4502-4521. |
| [12] |
马莹, 程莹莹, 石孝均, 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用. 微生物学报, 2023, 63(12): 4502-4521. |
| [13] |
Liu J Y, Hui J F, Sun M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. |
| [14] |
刘俊英, 回金峰, 孙梦瑶, 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149. |
| [15] |
Liu J Y, Liu X S, Zhang Q B, et al. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express, 2020, 10: 1-13. |
| [16] |
Zhang B B, Wang Y J, Liu H J, et al. Optimal phosphorus management strategies to enhance crop productivity and soil phosphorus fertility in rapeseed-rice rotation. Chemosphere, 2023, 337: 139392. |
| [17] |
Zhang P P, Liu G W, Yu Y. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in reclaimed farmland in coal mining subsidence area. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2498-2511. |
| [18] |
Zheng S M, Xia Y H, Hu Y J, et al. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil and Tillage Research, 2021, 209: 104903. |
| [19] |
Gu X D, Zhang F J, Xie X W, et al. Effects of N and P addition on nutrient and stoichiometry of rhizosphere and non-rhizosphere soils of alfalfa in alkaline soil. Scientific Reports, 2023, 13(1): 12119. |
| [20] |
Sun Y, Wang C T, Chen X L, et al. Phosphorus additions imbalance terrestrial ecosystem C∶N∶P stoichiometry. Global Change Biology, 2022, 28(24): 7353-7365. |
| [21] |
Yang K X, Zhao J W, Zhao J T, et al. Effects of nitrogen and phosphorus addition on biochemical and stoichiometric characteristics of alfalfa fine roots and root collars. Chinese Journal of Grassland, 2023, 45(12): 72-79. |
| [22] |
杨开鑫, 赵俊威, 赵建涛, 氮磷添加对紫花苜蓿细根与根颈生化及化学计量特征的影响. 中国草地学报, 2023, 45(12): 72-79. |
| [23] |
Yuan H Z, Liu S L, Razavi B S, et al. Differentiated response of plant and microbial C∶N∶P stoichiometries to phosphorus application in phosphorus-limited paddy soil. European Journal of Soil Biology, 2019, 95: 103122. |
| [24] |
An X X, Liu J Y, Liu X S, et al. Optimizing phosphorus application rate and the mixed inoculation of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria can improve the phosphatase activity and organic acid content in alfalfa soil. Sustainability, 2022, 14(18): 11342. |
| [25] |
Wang Z K, Xu Z H, Chen Z Y, et al. Synergistic effects of organic fertilizer coupled with phosphate-solubilizing and nitrogen-fixing bacteria on nutrient characteristics of yellow-brown soil under carbon deficiency. Chinese Journal of Applied Ecology, 2020, 31(10): 3413-3423. |
| [26] |
王志康, 徐子恒, 陈紫云, 有机肥和解磷固氮菌配施对缺碳黄棕壤养分特性的协同效应. 应用生态学报, 2020, 31(10): 3413-3423. |
| [27] |
Chauhan P K, Sudhir K U. Mixed consortium of salt-tolerant phosphate solubilizing bacteria improves maize (Zea mays) plant growth and soil health under saline conditions. Molecular Biotechnology, 2024, 66(3): 489-499. |
| [28] |
Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know. New Phytologist, 2016, 211(2): 386-403. |
| [29] |
Du Y, Lu R L, Xia J J. Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Functional Ecology, 2020, 34(8): 1525-1536. |
| [30] |
Peleja V L, Peleja P L, Lara T S, et al. Seasonality and phosphate fertilization in carbohydrates storage: Carapa guianensis Aubl. seedlings responses. Plants, 2022, 11(15): 1956. |
| [31] |
Zhao J J, Guo D Q, Yang M, et al. Effect of different dosage of dissolving phosphorus bacteria on growth and development in Paris polyphylla var. yunnanensis. Environmental Chemistry, 2022, 41(2): 761-769. |
| [32] |
赵晶晶, 郭冬琴, 杨敏, 不同剂量解磷菌对滇重楼生长发育的影响. 环境化学, 2022, 41(2): 761-769. |
| [33] |
Li Y L, Zhang J X, Peng Y K, et al. A counting method of living bacteria in microbial fertilizer. Acta Agriculturae Boreali-occidentalis Sinica, 1999, 8(4): 94-96. |
| [34] |
李亚兰, 张建新, 彭玉魁, 微生物肥料中有效活菌数检测方法. 西北农业学报, 1999, 8(4): 94-96. |
| [35] |
Zhang Y Y, An X X, Ma C H, et al. The coupling of phosphate solubilizing bacteria and phosphate fertilizer to improve the growth and photosynthetic performance of alfalfa. Chinese Journal of Grassland, 2023, 45(11): 43-51. |
| [36] |
张盈盈, 安晓霞, 马春晖, 解磷细菌与磷肥耦合提高苜蓿生长及光合性能. 中国草地学报, 2023, 45(11): 43-51. |
| [37] |
Li H S. Principle and technology of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2000. |
| [38] |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. |
| [39] |
Lu R K. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
| [40] |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
| [41] |
Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. |
| [42] |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947. |
| [43] |
Wei K Q, Zhao J W, Zhang Q B. Effects of phosphorus application on soil respiration rate and active organic carbon components of alfalfa. Acta Prataculturae Sinica, 2024, 33(2): 80-92. |
| [44] |
魏孔钦, 赵俊威, 张前兵. 施磷对紫花苜蓿土壤呼吸速率及活性有机碳组分的影响. 草业学报, 2024, 33(2): 80-92. |
| [45] |
Sun J, Wang Y Y, Zhang X P, et al. Screening of phosphorus solubilizing microorganisms in cold environment and their effects on the growth of Brassica napus. Chinese Journal of Applied Ecology, 2023, 34(1): 221-228. |
| [46] |
孙健, 王亚艺, 张鑫鹏, 青海地区解磷微生物的筛选及对小油菜生长的影响. 应用生态学报, 2023, 34(1): 221-228. |
| [47] |
Zhang J Y, Han F, Xia L, et al. The response strategies of growth and root traits to phosphorus addition in four herbaceous plants. Chinese Journal of Grassland, 2023, 45(1): 1-10. |
| [48] |
张家铱, 韩飞, 夏蕾, 四种草本植物生长性状和根性状对磷添加的响应策略. 中国草地学报, 2023, 45(1): 1-10. |
| [49] |
Han Q F, Zhou F, Jia J, et al. Effect of fertilization on productivity different producing performance alfalfa varieties and soil fertility. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1413-1418. |
| [50] |
韩清芳, 周芳, 贾珺, 施肥对不同品种苜蓿生产力及土壤肥力的影响. 植物营养与肥料学报, 2009, 15(6): 1413-1418. |
| [51] |
Chen Y M, Li Q, Wang Y X, et al. Effects of N, P, K fertilizers application on yield, rhizobium and nutrient up-take and utilization of alfalfa. Journal of Arid Land Resources and Environment, 2019, 33(7): 174-180. |
| [52] |
陈昱铭, 李倩, 王玉祥, 氮、磷、钾肥对苜蓿产量、根瘤菌及养分吸收利用率的影响. 干旱区资源与环境, 2019, 33(7): 174-180. |
| [53] |
Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 2010, 98: 139-151. |
| [54] |
Mao R, Chen H M, Zhang X H, et al. Effects of P addition on plant C∶N∶P stoichiometry in an N-limited temperate wetland of Northeast China. Science of the Total Environment, 2016, 559: 1-6. |
| [55] |
Koerselman W, Meuleman A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33: 1441-1450. |
| [56] |
Xia J, Nan L L, Chen J, et al. Morphological and physiological responses of different root types of alfalfa under low phosphorus stress. Chinese Journal of Grassland, 2023, 45(10): 58-67. |
| [57] |
夏静, 南丽丽, 陈洁, 低磷胁迫下不同根型苜蓿形态及生理响应. 中国草地学报, 2023, 45(10): 58-67. |
国家自然科学基金项目(32260347)
新疆维吾尔自治区重点研发任务专项(2023B02031)
国家现代农业产业技术体系资助
/
| 〈 |
|
〉 |