三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究
王守兴 , 周华坤 , 欧立鹏 , 李成先 , 王雁鹤 , 宁晓春 , 谷强 , 魏代军 , 杨明新
草业学报 ›› 2025, Vol. 34 ›› Issue (04) : 16 -26.
三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究
Vegetation and soil microbial diversity and their relationships with soil factors in different grassland types of the three river headwaters region
草地生物多样性是保持草地生态系统功能和稳定性的基础,了解不同草地类型植被和土壤微生物多样性及其影响因素,有助于制定科学的保护和修复策略。以三江源不同草地类型为研究对象,通过野外植被群落调查和扩增子测序相结合,探讨了不同草地类型的植被和土壤微生物多样性特征,并分析了其与土壤环境因子的关系。结果表明,三江源地区的高寒草甸、高寒草原和温性草原在植被群落特征、土壤微生物多样性特征以及土壤理化性质方面存在显著差异。高寒草甸具有较高的植被覆盖度和生物量(P<0.05),而温性草原则具有最大的植被高度(P<0.05)。在土壤真菌方面,高寒草甸Faith’s-pd指数显著大于温性草原和高寒草原(P<0.05),而Simpson和Shannon-Wiener指数显著小于温性草原和高寒草原(P<0.05);在土壤细菌方面,高寒草原的Chao1指数和Faith’s-pd指数显著小于温性草原和高寒草甸(P<0.05),而Simpson和Shannon-Wiener指数差异不显著(P>0.05)。土壤环境因子对不同草地类型的植被和土壤微生物群落具有显著影响,其中土壤pH、有机碳(SOC)含量和全氮(N)含量是主要影响因子。研究结果为三江源地区不同草地类型的生物多样性保护和生态修复提供了理论依据。
Grassland biodiversity is the basis for maintaining the function and stability of grassland ecosystems. Understanding the diversity of vegetation and soil microorganisms in different grassland types and their influencing factors can help to formulate scientific conservation and restoration strategies. In this study, we investigated the characteristics of vegetation and soil microbial diversity of different grassland types and analyzed their relationships with soil environmental factors by combining field vegetation community surveys and amplicon sequencing, for different grassland types in the Three-River Headwaters Region. It was found that alpine meadows, alpine steppe and temperate steppe in the Three-River Headwaters Region had significant differences in vegetation community characteristics, soil microbial diversity characteristics and soil physicochemical properties. Alpine meadows had higher vegetation cover and biomass (P<0.05), while temperate steppe had the greatest vegetation height (P<0.05). For soil fungi, the Faith’s-pd index was significantly greater in alpine meadows than in temperate steppe and alpine steppe (P<0.05), whereas the Simpson and Shannon-Wiener indices were significantly lower than in temperate steppe and alpine steppe (P<0.05); and for soil bacteria, the Chao1 and Faith’s-pd indices were significantly lower in alpine steppe than in temperate steppe and alpine meadows (P<0.05), while the differences between Simpson and Shannon-Wiener indices were not significant (P>0.05). Soil environmental factors had significant effects on vegetation and soil microbial communities in the different grassland types, among which pH, soil organic carbon content and soil total nitrogen content were one of the main factors of influence. The results of this study provide a theoretical basis for biodiversity conservation and ecological restoration of different types of grasslands in the Three-River Headwaters Region.
三江源 / 植被特征 / 土壤微生物 / 物种多样性 / 高通量测序
the three river headwaters region / vegetation characteristics / soil microorganism / species diversity / high-throughput sequencing
| [1] |
Sala O E, Chapin F S, Armesto J J, et al. Global biodiversity scenarios for the year 2100. Science, 2000, 287(5459): 1770-1774. |
| [2] |
Cardinale B J, Duffy J E, Gonzalea A, et al. Biodiversity loss and its impact on humanity. Nature, 2012, 486(7401): 59-67. |
| [3] |
Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270. |
| [4] |
Manule D B, Maestre F T, Reich P B, et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecological Monographs, 2016, 86(3): 373-390. |
| [5] |
Chen X, Zhang Y P. Impacts of climate, phenology, elevation and their interactions on the net primary productivity of vegetation in Yunnan, China under global warming. Ecological Indicators, 2023, 154: 1-13. |
| [6] |
Zhang X C, Jin X M. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China. Ecological Indicators, 2021, 131: 1-14. |
| [7] |
Zhao X Q, Xu S X, Zhao L, et al. Innovation and practice on biodiversity conservation in Sanjiangyuan National Park. Bulletin of Chinese Academy of Sciences, 2023, 38(12): 1833-1844. |
| [8] |
赵新全, 徐世晓, 赵亮, 三江源国家公园生物多样性保护创新及实践. 中国科学院院刊, 2023, 38(12): 1833-1844. |
| [9] |
Zhao X Q. The five integrative management strategies of Sanjiangyuan National Park. Biodiversity Science, 2021, 29(3): 301-303. |
| [10] |
赵新全. 三江源国家公园创建“五个一”管理模式. 生物多样性, 2021, 29(3): 301-303. |
| [11] |
Shao Q Q, Liu S C, Ning J, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geographica Sinica, 2022, 77(9): 2133-2153. |
| [12] |
邵全琴, 刘树超, 宁佳, 2000-2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153. |
| [13] |
Yang C, Wang W Y, Zhou H K, et al. Coupling and coordination characteristic between plant diversity and soil factors of alpine grasslands in the Three Rivers Source Region. Journal of Gansu Agricultural University, 2022, 57(2): 125-136. |
| [14] |
杨冲, 王文颖, 周华坤, 三江源区高寒草地植物多样性与土壤因子的耦合关系. 甘肃农业大学学报, 2022, 57(2): 125-136. |
| [15] |
Chen X, Li Q, Chen D D, et al. Analysis on the difference of microbial function gene in different grasslands of Sanjiangyuan National Park. Ecology and Environmental Sciences, 2020, 29(3): 472-482. |
| [16] |
陈昕, 李奇, 陈懂懂, 三江源国家公园不同草地土壤微生物功能基因的差异性分析. 生态环境学报, 2020, 29(3): 472-482. |
| [17] |
Pan Y L, Tang H P, Liu D, et al. Geographical patterns and drivers of plant productivity and species diversity in the Qinghai-Tibet Plateau. Plant Diversity, 2023, DOI: https://doi.org/10.1016/j.pld.2023.06.007. |
| [18] |
McSherry M E, Ritchie M E. Effects of grazing on grassland soil carbon: A global review. Global Change Biology, 2013, 19(5): 1347-1357. |
| [19] |
Tian L, Zhang Y J, Zhu J T. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environmental Research Letters, 2014, 9(10): 11-23. |
| [20] |
Li C X, Hendrik W, Bernhard S, et al. Estimating plant traits of alpine grasslands on the Qinghai-Tibetan Plateau using remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2263-2275. |
| [21] |
Wang S Z, Fan J W, Li Y Z, et al. Effects of grazing exclusion on biomass growth and species diversity among various grassland types of the Tibetan Plateau. Sustainability, 2019, 11(6): 1705-1718. |
| [22] |
Asitaiken J, Dong Y Q, Zhou S J, et al. Effects of enclosure on vegetation diversity and niche characteristics of different grassland types in Xinjiang. Pratacultural Science, 2023, 40(5): 1168-1185. |
| [23] |
阿斯太肯·居力海提, 董乙强, 周时杰, 封育对不同草地类型植物群落多样性及生态位特征的影响-以新疆不同类型草地为例. 草业科学, 2023, 40(5): 1168-1185. |
| [24] |
Upama K C, Samiran B, Thompson K A, et al. Cattle grazing management affects soil microbial diversity and community network complexity in the Northern Great Plains. Science of the Total Environment, 2024, 912: 169353. |
| [25] |
Wu L W, Zhang Y, Guo X, et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nature Microbiology, 2022, 7(7): 1054-1062. |
| [26] |
Wei S, Li S W, Wang J H, et al. Effects of grazing on plant species and phylogenetic diversity in alpine grasslands Northern Tibet. Ecological Engineering, 2021, 170: 106331. |
| [27] |
Pan J X, Peng Y F, Wang J S, et al. Controlling factors for soil bacterial and fungal diversity and composition vary with vegetation types in alpine grasslands. Applied Soil Ecology, 2023, 184: 104777. |
| [28] |
Shen C C, Shi Y, Fan K K, et al. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. Microbiology Ecology, 2019, 95(2): 3-12. |
| [29] |
Zhou H, Zhang D G, Jiang Z H, et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 2019, 651(2): 2281-2291. |
| [30] |
Hu L, Wang C T, Wang G X, et al. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwaters region of Thee Rivers, China. Acta Prataculturae Sinica, 2014, 23(3): 8-19. |
| [31] |
胡雷, 王长庭, 王根绪, 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. |
| [32] |
Liu P X, Wang J B, Sun X F, et al. Climatic suitability of vegetation growth over alpine grassland in the Three-River Headwaters. Acta Agrestia Sinica, 2023, 31(10): 3145-3156. |
| [33] |
刘佩霞, 王军邦, 孙晓芳, 三江源区高寒草地植被生长的气候适宜性研究. 草地学报, 2023, 31(10): 3145-3156. |
| [34] |
Zhang Y X, Fan J W, Cao W, et al. Spatial and temporal dynamics of grassland yield and its response to precipitation in the Three Headwater Region from 2006 to 2013. Acta Prataculturae Sinica, 2017, 26(10): 10-19. |
| [35] |
张雅娴, 樊江文, 曹巍, 2006-2013年三江源草地产草量的时空动态变化及其对降水的响应. 草业学报, 2017, 26(10): 10-19. |
| [36] |
Zhou H K, Li S, Sun J, et al. Characteristics of plant community and soil physical and chemical properties in alpine meadow along altitude gradient in the headwaters region of Three-River on Tibetan Plateau. Acta Agrestia Sinica, 2023, 31(6): 1735-1743. |
| [37] |
周华坤, 李珊, 孙建, 三江源区高寒草甸植物群落与土壤理化性质沿海拔梯度的变化特征. 草地学报, 2023, 31(6): 1735-1743. |
| [38] |
Yang M X, Chen K Y, Li C X, et al. Effects of grassland degradation on soil fungal communities in alpine steppes of the Three-River Headwaters Region during different growth periods. Pratacultural Science, 2024, 41(1): 15-25. |
| [39] |
杨明新, 陈科宇, 李成先, 三江源区高寒草原退化对不同生长期土壤真菌群落的影响. 草业科学, 2024, 41(1): 15-25. |
| [40] |
Zhang Y S, Zhao X Q, Zhao S X, et al. Correlation between evapotranspiration and climate factors in warm steppe in source region of Yangtze, Yellow and Yalu Tsangpo Rivers. Journal of Desert Research, 2010, 30(2): 363-368. |
| [41] |
张耀生, 赵新全, 赵双喜, 三江源区温性草原蒸散量与主要影响因子的相关分析. 中国沙漠, 2010, 30(2): 363-368. |
| [42] |
Yang M X, Yang X C, Zhao Y, et al. Estimated carbon storage and influencing factors of alpine grassland in the source region of the Yellow River. Acta Ecologica Sinica, 2023, 43(9): 3546-3557. |
| [43] |
杨明新, 杨秀春, 赵云, 黄河源园区高寒草地碳储量估算及其影响因素. 生态学报, 2023, 43(9): 3546-3557. |
| [44] |
Wang Y F, Xue K, Hu R H, et al. Vegetation structural shift tells environmental changes on the Tibetan Plateau over 40 years. Science Bulletin, 2023, 68(17): 1928-1937. |
| [45] |
Bao S D. Soil agrochemical analysis (Third Edition). Beijing: China Agriculture Press, 2013: 25-114. |
| [46] |
鲍士旦. 土壤农化分析(第3版). 北京:中国农业出版社, 2013: 25-114. |
| [47] |
Wagner M R, Lundberg D S, Devin C D, et al. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 2014, 17(6): 717-726. |
| [48] |
Zhao S, Liu D Y, Ning L, et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil. Biology and Fertility of Soils, 2014, 50(5): 765-774. |
| [49] |
Fang J Y, Wang X P, Shen Z H, et al. Methods and protocols for plant community inventory. Biodiversity Science, 2009, 17(6): 533-548. |
| [50] |
方精云, 王襄平, 沈泽昊, 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6): 533-548. |
| [51] |
Chao A. Non parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 1984, 11(4): 265-270. |
| [52] |
Tuomisto H. A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia, 2010, 164(4): 853-860. |
| [53] |
Tang L, Dong S K, Liu S L, et al. The relationship between soil physical properties and alpine plant diversity on Qinghai Tibet Plateau. Eurasian Journal of Soil Science, 2015, 4(2): 88-93. |
| [54] |
Yang X T, Fan J, Gai J M, et al. Soil physical and chemical properties and vegetation characteristics of different types of grassland in Qilian Mountains, China. Chinese Journal of Applied Ecology, 2022, 33(4): 878-886. |
| [55] |
杨学亭, 樊军, 盖佳敏, 祁连山不同类型草地的土壤理化性质与植被特征. 应用生态学报, 2022, 33(4): 878-886. |
| [56] |
Dong S K, Tang L, Zhang X F, et al. Relationship between plant species diversity and functional diversity in alpine grasslands. Acta Ecologica Sinica, 2017, 37(5): 1472-1483. |
| [57] |
董世魁, 汤琳, 张相锋, 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 2017, 37(5): 1472-1483. |
| [58] |
Shao J X, Liu Y H, Ma H, et al. Meta-analysis of physical and chemical properties of shallow soils in degraded alpine grasslands. Acta Agrestia Sinica, 2022, 30(6): 1370-1378. |
| [59] |
邵建翔, 刘育红, 马辉, 退化高寒草地浅层土壤理化性质Meta分析. 草地学报, 2022, 30(6): 1370-1378. |
| [60] |
Fu L J, Yan Y, Li X Q, et al. Rhizosphere soil microbial community and its response to different utilization patterns in the semi-arid alpine grassland of northern Tibet. Frontiers in Microbiology, 2022, 13: 931795. |
| [61] |
Zhao W, Yin Y L, Li S X, et al. The characteristics of soil fungal community in degraded alpine meadow in the Three Rivers Source Region, China. Chinese Journal of Applied Ecology, 2021, 32(3): 869-877. |
| [62] |
赵文, 尹亚丽, 李世雄, 三江源区退化高寒草甸土壤真菌群落特征. 应用生态学报, 2021, 32(3): 869-877. |
| [63] |
Zhao X G, Zhang S T, Niu K C. Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 1-9. |
| [64] |
赵兴鸽, 张世挺, 牛克昌. 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系. 应用与环境生物学报, 2020, 26(1): 1-9. |
| [65] |
Li H Y, Yao T, Zhang J G, et al. Relationship between soil bacterial community and environmental factors in the degraded alpine grassland of eastern Qilian Mountains, China. Chinese Journal of Applied Ecology, 2018, 29(11): 3793-3801. |
| [66] |
李海云, 姚拓, 张建贵, 东祁连山退化高寒草地土壤细菌群落与土壤环境因子间的相互关系. 应用生态学报, 2018, 29(11): 3793-3801. |
| [67] |
Han W Y, Chen L, Su X K, et al. Effects of soil physico-chemical properties on plant species diversity along an elevation gradient over alpine grassland on the Qinghai-Tibetan Plateau, China. Frontiers in Plant Science, 2022, 13(4): 822268-822281. |
| [68] |
Ahmad B I, Mudasir F, Qadir R U, et al. Predicting potential distribution and range dynamics of Aquilegia fragrans under climate change: Insights from ensemble species distribution modelling. Environmental Monitoring and Assessment, 2023, 195(5): 623-641. |
| [69] |
Zhang X Y, Feng M, Liu Q G, et al. Distribution patterns and driving factors of grassland plant diversity along a precipitation gradient on the Qinghai-Tibet Plateau. Chinese Journal of Ecology, 2024, 43(6): 1674-1680. |
| [70] |
张小燕, 冯明, 刘倩光, 青藏高原草地植物多样性沿降水梯度的分布格局及影响因素. 生态学杂志, 2024, 43(6): 1674-1680. |
| [71] |
Zuo X A, Sun S S, Wang S K, et al. Contrasting relationships between plant-soil microbial diversity are driven by geographic and experimental precipitation changes. Science of the Total Environment, 2023, 861: 160654. |
| [72] |
Yang P N, Li X L, Li C Y, et al. Response of soil microbial diversity to long-term enclosure in degraded patches of alpine meadow in the source zone of the Yellow River. Environmental Science, 2023, 44(4): 2293-2303. |
| [73] |
杨鹏年, 李希来, 李成一, 黄河源区斑块化退化高寒草甸土壤微生物多样性对长期封育的响应. 环境科学, 2023, 44(4): 2293-2303. |
| [74] |
Shangguan Z J, Jing X, Wang H, et al. Plant biodiversity responds more strongly to climate warming and anthropogenic activities than microbial biodiversity in the Qinghai-Tibetan alpine grasslands. Journal of Ecology, 2023, 112(1): 110-125. |
| [75] |
Laurent P, Claire C, Andreas K, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2023, 22(4): 226-239. |
| [76] |
Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. |
| [77] |
Xue K, Zhang B, Zhou S T, et al. Soil microbial communities in alpine grasslands on the Tibetan Plateau and their influencing factors. Chinese Science Bulletin, 2019, 64(27): 2915-2927. |
| [78] |
薛凯, 张彪, 周姝彤, 青藏高原高寒草地土壤微生物群落及影响因子. 科学通报, 2019, 64(27): 2915-2927. |
| [79] |
Xu H, Ding M J, Zhang H, et al. Interaction effects of vegetation and soil factors on microbial communities in alpine steppe under degradation. Environmental Science, 2024, 45(7): 4251-4265. |
| [80] |
徐欢, 丁明军, 张华, 高寒草原退化过程中植被和土壤因子对微生物群落的交互影响. 环境科学, 2024, 45(7): 4251-4265. |
中国地质调查局项目(DD20220959)
中国地质调查局项目(DD20230094)
中国地质调查局自然资源综合调查指挥中心科技创新基金(KC20220018)
/
| 〈 |
|
〉 |