复合乳酸菌添加剂对低温环境下意大利黑麦草青贮发酵品质的影响
王思然 , 刘蓓一 , 田吉鹏 , 程云辉 , 许能祥 , 张文洁 , 王欣 , 丁成龙
草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 159 -170.
复合乳酸菌添加剂对低温环境下意大利黑麦草青贮发酵品质的影响
Improvement in the fermentation quality of Italian ryegrass silage by ensiling with combined lactic acid bacteria inoculants at low temperature
环境温度对青贮发酵品质具有重要影响。在寒冷地区,低温是限制青贮发酵的一个关键因素,然而目前关于提高低温环境下青贮发酵品质的研究较少。本试验旨在研究从青藏高原分离筛选出的4株乳酸菌(乳酸片球菌LOG9、戊糖片球菌LO7、棒状乳杆菌亚种LM8、植物乳杆菌M1)特性,并评价它们在3种环境温度(10、15、25 ℃)下对意大利黑麦草青贮发酵品质的组合添加效果。对筛选得到的菌株进行形态学和生理生化指标检测,随后在不同环境温度下(10、15、25 ℃)将其分别组合(LO7+LM8、LO7+M1、LOG9+LM8、LOG9+M1)添加至意大利黑麦草中(添加量: 1×105 cfu·g-1鲜重),在实验室青贮罐(1 L)内发酵60 d后开启。4株菌株均可在5~20 ℃、pH 3.5~7.0、NaCl(3.0%、6.5%)条件下正常生长。青贮60 d后, 与不同温度下对照组相比,各组合添加剂均可明显改善意大利黑麦草青贮发酵品质, 显著提高乳酸含量和乳酸/乙酸(P<0.05),并显著降低pH、氨态氮含量和不良微生物数量(P<0.05)。在10和15 ℃环境温度下,与LO7+LM8/M1处理组相比,LOG9+LM8/M1处理组显著提高了乳酸含量和乳酸/乙酸(P<0.05),并显著降低了氨态氮含量(P<0.05)。相较于LOG9+M1处理组,LOG9+LM8处理组显著提高了乳酸含量和乳酸菌数量(P<0.05),并显著降低了氨态氮含量(P<0.05)。综合考虑, LOG9+LM8组最适宜作为提高低温环境下意大利黑麦草青贮发酵品质的复合乳酸菌添加剂。
Temperature is an important factor affecting ensilage. In cold regions, low temperature can be an adverse environmental condition for ensiling. However, few studies have focused on improving the ensiling process at low temperature to enhance silage quality. The aims of this study were: 1) To characterize the lactic acid bacteria (LAB) strains Pediococcus acidilactici LOG9, Pediococcus pentosaceus LO7, Lentilactobacillus coryniformis subsp. LM8, and Lactiplantibacillus plantarum M1, which were isolated from the Tibetan Plateau. 2) Determine the effect of adding combinations of these strains on the quality of Italian ryegrass (Lolium multiflorum) silage produced at three temperatures (10, 15, 25 ℃). The isolated strains were subjected to morphological, physiological, and biochemical analyses. Four combined inoculants (LO7+LM8, LO7+M1, LOG9+LM8, and LOG9+M1) were added to Italian ryegrass (at 1×105 cfu·g-1 fresh weight). These mixtures were then ensiled for 60 days in laboratory silos (1 L) at different ambient temperatures (10, 15, 25 ℃). All the isolates were able to grow normally at 5-20 ℃, pH 3.5-7.0, with NaCl concentrations of 3.0% and 6.5% w/w. Compared with the three corresponding controls, all the combined LAB inoculants improved the quality of Italian ryegrass silage, as indicated by markedly higher (P<0.05) lactic acid (LA) contents, higher lactic acid/acetic acid (LA/AA), lower pH and ammonia nitrogen (NH3-N) contents, and lower counts of undesirable microorganisms. With ensilage at 10 and 15 ℃, LOG9+LM8/M1 inoculants performed better than the LO7+LM8/M1 inoculants, as demonstrated by the distinctly higher (P<0.05) LA contents and LA/AA, and lower NH3-N contents. Compared with the silage produced with LOG9+M1, that produced with LOG9+LM8 had significantly (P<0.05) higher LA contents and LAB counts, and lower NH3-N contents. Therefore, the combined inoculant LOG9+LM8 is recommended as the starter culture for producing Italian ryegrass silage at low temperature.
发酵品质 / 复合乳酸菌添加剂 / 意大利黑麦草 / 青贮饲料 / 低温
fermentation quality / combined lactic acid bacteria inoculant / Italian ryegrass / silage / low temperature
| [1] |
Cui Z M, Guo G, Yuan X J, et al. Characterization and identification of high quality lactic acid bacteria from hulless barley straw silage. Acta Agrestia Sinica, 2015, 23(3): 607-615. |
| [2] |
崔棹茗, 郭刚, 原现军, 青稞秸秆青贮饲料中优良乳酸菌的筛选及鉴定. 草地学报, 2015, 23(3): 607-615. |
| [3] |
Pang H L, Tan Z, Qin G, et al. Phenotypic and phylogenetic analysis of lactic acid bacteria isolated from forage crops and grasses in the Tibetan Plateau.The Journal of Microbiology, 2012, 50(1): 63-71. |
| [4] |
Zhang J, Guo G, Chen L, et al. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan Plateau. Animal Science Journal, 2015, 86(6): 595-602. |
| [5] |
Lin D D, Ju Z L, Chai J K, et al. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
| [6] |
蔺豆豆, 琚泽亮, 柴继宽, 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定. 草业学报, 2022, 31(5): 103-114. |
| [7] |
Weinberg Z G, Szakacs G, Ashbell G Y. The effect of temperature on the ensiling process of corn and wheat. Journal of Applied Microbiology, 2001, 90(4): 561-566. |
| [8] |
Ali M, Cone J W, Khan N A, et al. Effect of temperature and duration of ensiling on in vitro degradation of maize silages in rumen fluid. Journal of Animal Physiology and Animal Nutrition, 2015, 99(2): 251-257. |
| [9] |
Kung L. Understanding the biology of silage preservation to maximize quality and protect the environment. (2010-12-01)[2024-06-10]. https://alfalfasymposium.ucdavis.edu/+symposium/proceedings/2010/10-41.pdf. |
| [10] |
Zhou Y, Drouin P, Lafrenière C. Effect of temperature (5-25 ℃) on epiphytic lactic acid bacteria populations and fermentation of whole-plant corn silage. Journal of Applied Microbiology, 2016, 121(3): 657-671. |
| [11] |
Kim K H, Uchida S. Comparative studies of ensiling characteristics between temperate and tropical species. 1. The effects of various ensiling conditions on the silage quality of Italian ryegrass (Lolium multiflorum Lam.) and rhodes grass (Chloris gayana Kunth.). Japanese Journal of Grassland Science, 1990, 36(3): 292-299. |
| [12] |
Weinberg Z G, Muck R E. New trends in development and use of inoculants for silage. FEMS Microbiology Reviews, 1996, 19(1): 53-68. |
| [13] |
Zielińska K J, Fabiszewska A U. Improvement of the quality of maize grain silage by a synergistic action of selected lactobacilli strains. World Journal of Microbiology and Biotechnology, 2018, 34(1): 9. |
| [14] |
Parvin S, Nishino N. Succession of lactic acid bacteria in wilted rhodegrass silage assessed by plate culture and denaturing gradient gel electrophoresis. Grassland Science, 2010, 56(1): 51-55. |
| [15] |
Oliveira A S, Weinberg Z G, Ogunade I M, et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science, 2017, 100(6): 4587-4603. |
| [16] |
Cai Y M, Benno Y, Ogawa M, et al. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage, crops on silage fermentation. Applied and Environmental Microbiology, 1998, 64(8): 2982-2987. |
| [17] |
Avila C L S, Carvalho B F, Pinto J C, et al. The use of Lactobacillus species as starter cultures for enhancing the quality of sugar cane silage. Journal of Dairy Science, 2014, 97(2): 940-951. |
| [18] |
Cai Y M, Kumai S, Ogawa M, et al. Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation. Applied and Environmental Microbiology, 1999, 65(7): 2901-2906. |
| [19] |
Yang X D, Yuan X J, Guo G, et al. Isolation and identification of low temperature-tolerant lactic bacteria from legume silages in Tibet. Acta Prataculturae Sinica, 2015, 24(6): 99-107. |
| [20] |
杨晓丹, 原现军, 郭刚, 西藏豆科牧草青贮饲料中耐低温优良乳酸菌的筛选. 草业学报, 2015, 24(6): 99-107. |
| [21] |
Boone D R, Garrity G M, Castenholz R W, et al. Bergey’s manual of systematic bacteriology: The Firmicutes. New York: Springer, 2001. |
| [22] |
Zhang Q, Yu Z, Wang X. Isolating and evaluating lactic acid bacteria strains with or without sucrose for effectiveness of silage fermentation. Grassland Science, 2015, 61(3): 167-176. |
| [23] |
Zhang H J, Yu Z, Wang L, et al. Isolation and identification of lactic acid bacteria from silage and filtering of excellent strains. Acta Agrestia Sinica, 2011, 19(1): 137-141. |
| [24] |
张慧杰, 玉柱, 王林, 青贮饲料中乳酸菌的分离鉴定及优良菌株筛选. 草地学报, 2011, 19(1): 137-141. |
| [25] |
Zhang J M, Guan H, Li H P, et al. Effects of oat∶feed pea sowing ratio and lactic acid bacteria addition on crop silage fermentation and ruminal degradation characteristics of the resulting total mixed ration. Acta Prataculturae Sinica, 2024, 33(1): 169-181. |
| [26] |
张珈敏, 关皓, 李海萍, 混播比例及乳酸菌剂对燕麦-饲用豌豆发酵TMR品质及瘤胃降解特性的影响. 草业学报, 2024, 33(1): 169-181. |
| [27] |
Owens V, Albrecht K, Muck R, et al. Protein degradation and fermentation characteristics of red clover and alfalfa silage harvested with varying levels of total nonstructural carbohydrates. Crop Science, 1999, 39(6): 1873-1880. |
| [28] |
Jasaitis D K, Wohlt J E, Evans J L. Influence of feed ion content on buffering capacity of ruminant feedstuffs in vitro. Journal of Dairy Science, 1987, 70(7): 1391-1403. |
| [29] |
Tian J P, Liu B Y, Gu H R, et al. Effects of lactic acid bacteria and calcium propionate on fermentation quality and mycotoxin contents of whole plant maize and oat silages. Acta Prataculturae Sinica, 2022, 31(8): 157-166. |
| [30] |
田吉鹏, 刘蓓一, 顾洪如, 乳酸菌及丙酸钙对全株玉米和燕麦青贮饲料发酵品质和霉菌毒素含量的影响. 草业学报, 2022, 31(8): 157-166. |
| [31] |
Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
| [32] |
Pang H L, Qing Y, Tan Z F, et al. Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis. Systematic and Applied Microbiology, 2011, 34(3): 235-241. |
| [33] |
Nakanishi K, Tokuda H, Ando T, et al. Screening of lactic acid bacteria having the ability to produce reuterin: Screening of LAB to produce reuterin. Japanese Journal of Lactic Acid Bacteria, 2002, 13(1): 37-45. |
| [34] |
Derzelle S, Hallet B, Francis K P, et al. Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. Journal of Bacteriology, 2000, 182(18): 5105-5113. |
| [35] |
Song S, Bae D W, Lim K, et al. Cold stress improves the ability of Lactobacillus plantarum l67 to survive freezing. International Journal of Food Microbiology, 2014, 191(17): 135-143. |
| [36] |
Huang L J, Sun R J, Gao W J, et al. Screening and identification of whole rice surface dominant lactic acid bacteria. Acta Prataculturae Sinica, 2024, 33(1): 117-125. |
| [37] |
黄丽娟, 孙镕基, 高文婧, 全株水稻表面优势乳酸菌的筛选与鉴定. 草业学报, 2024, 33(1): 117-125. |
| [38] |
Wang S R, Li J F, Dong Z H, et al. Effect of microbial inoculants on the fermentation characteristics, nutritive value, and in vitro digestibility of various forages. Animal Science Journal, 2019, 90(2): 178-188. |
| [39] |
Aguilar A, Ingemansson T, Magnien E. Extremophile microorganisms as cell factories: support from the European Union. Extremophiles, 1998, 2(3): 367-373. |
| [40] |
McDonald P, Henderson A R, Heron S J E. The biochemistry of silage. London: Chalcombe Publications, 1991. |
| [41] |
Saarisalo E, Skyttä E, Haikara A, et al. Screening and selection of lactic acid bacteria strains suitable for ensiling grass.Journal of Applied Microbiology, 2007, 102(2): 327-336. |
| [42] |
Darwin C. On the origin of species by means of natural selection. American Anthropologist, 1963, 61(1): 176-177. |
| [43] |
Wang S R, Shao T, Li J F, et al. Fermentative products and bacterial community structure of C4 forage silage in response to epiphytic microbiota from C3 forages. Animal Bioscience, 2022, 35(12): 1860-1870. |
| [44] |
Wang S R, Dong Z H, Li J F, et al. Pediococcus acidilactici strains as silage inoculants for improving the fermentation quality, nutritive value and in vitro ruminal digestibility in different forages. Journal of Applied Microbiology, 2019, 126(2): 424-434. |
国家自然科学基金青年科学基金项目(32301500)
江苏现代农业产业技术体系建设专项资金(JATS[2023]398)
农业农村部种养结合重点实验室开放课题基金(202303)
江苏省大型科学仪器开放共享自主研究课题资助
/
| 〈 |
|
〉 |