菌酶协同发酵豆秸对湖羊生长性能、血清指标和瘤胃微生物的影响
祁帅 , 张艳丽 , 万永杰 , 牛伟强 , 张积鑫 , 高雪 , 茆达干
草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 189 -201.
菌酶协同发酵豆秸对湖羊生长性能、血清指标和瘤胃微生物的影响
Effects of soybean straw co-fermented with a bacterium-enzyme mixture on the growth performance, serum indexes, and rumen microorganisms of Hu sheep
本试验旨在探究菌酶协同发酵豆秸对湖羊生长性能、血清指标和瘤胃微生物的影响。48只4月龄健康湖羊公羔[(27.00±2.00) kg]随机分为4组(n=12),每组3个重复,每个重复(栏)4只羊,对照组饲喂基础日粮,试验组1、2、3分别以33%、66%、100%的发酵豆秸替代饲料中原有的豆秸,预饲期7 d,正式期60 d。结果表明:与对照组相比,1~30 d和1~60 d试验2组的平均日采食量和料重比均显著降低(P<0.05);试验3组的血清白蛋白、谷丙转氨酶、高密度脂蛋白和总胆固醇含量均显著提高(P<0.05);试验2和3组的球蛋白含量均显著升高(P<0.05);试验各组的总蛋白和谷草转氨酶活性均显著提高(P<0.05);试验3组的超氧化物歧化酶活性显著提高(P<0.05),试验各组的过氧化氢酶和谷胱甘肽过氧化物酶活性均显著提高(P<0.05);试验各组的免疫球蛋白A含量均显著提高(P<0.05),试验2和3组免疫球蛋白G和M含量均显著提高(P<0.05);试验2组粗蛋白、中性洗涤纤维和酸性洗涤纤维表观消化率均显著升高(P<0.05);试验2组的瘤胃异丁酸和氨态氮含量显著上升(P<0.05),戊酸含量显著下降(P<0.05);在门水平上,试验2组瘤胃拟杆菌门丰度显著提升(P<0.05),厚壁菌门丰度显著下降(P<0.05);在属水平上,试验2组普雷沃氏菌科UCG-001丰度显著提高(P<0.05)。菌酶协同发酵豆秸提高了湖羊抗氧化能力、免疫力和养分表观消化率,改善了湖羊瘤胃发酵和微生物结构组成,为发酵豆秸在湖羊生产中的应用提供了科学依据。
We investigated the effects of soybean (Glycine max) straw co-fermented with a bacterium-enzyme mixture on the growth performance, serum indexes, and rumen microorganisms of Hu sheep. Forty-eight healthy male Hu lambs [(27.00±2.00) kg] aged 4 months were randomly assigned into four groups, with three replicates in each group and four lambs per replicate (stall). Lambs in the control group were fed with a basal diet (Group C), and those in the trial groups were fed with the basal diet with 33% (Group 1), 66% (Group 2), and 100% (Group 3) of the original soybean straw substituted with fermented soybean straw. The experimental period included 7 days of pre-experiment and 60 days of formal experiment. The main results were as follows: Compared with Group C, Group 2 showed a significantly decreased average daily matter intake and feed-to-gain ratio during days 1-30 and 1-60 (P<0.05). The serum contents of albumin, glutamic pyruvic transaminase, high density lipoprotein, and total cholesterol were significantly higher in Group 3 than in the control (P<0.05). The globulin contents were significantly higher in Groups 2 and 3 (P<0.05), and the total protein content and glutamic oxaloacetic transaminase activity were significantly higher in all trial groups (P<0.05) than in the control. The activity of superoxide dismutase in serum was increased significantly in Group 3 (P<0.05), and catalase and glutathione peroxidase activities in serum were increased significantly in all trial groups (P<0.05) compared with the control. The serum immunoglobulin (Ig) A content was increased significantly in all trial groups (P<0.05), and the serum IgG and IgM contents were increased significantly in Groups 2 and 3 (P<0.05), compared with the control. Compared with the control, Group 2 significantly increased apparent digestibility of crude protein, acid detergent fiber and neutral detergent fiber (P<0.05); significantly increased rumen isobutyric acid and ammonia nitrogen (NH3-N) contents (P<0.05); and significantly decreased valeric acid content (P<0.05). In terms of the bacterial community in the rumen, at the phylum level, the abundance of rumen Bacteroidota wasincreased (P<0.05), while that of Firmicuteswas decreased (P<0.05) in Group 2 compared with the control. At the genus level, the abundance of Prevotellaceae_UCG-001 was significantly higher in Group 2 than in the control (P<0.05). In conclusion, the addition of bacterium-enzyme co-fermented soybean straw to the diet can improve the antioxidant and immune capacity, nutrient apparent digestibility, the rumen environment, and the rumen microbial community structure of Hu sheep. These results provide a scientific basis for the application of fermented soybean straw in the production of Hu sheep.
湖羊 / 生长性能 / 发酵豆秸 / 菌酶协同 / 瘤胃微生物
Hu sheep / growth performance / fermented soybean straw / bacterium-enzyme synergy / rumen microorganisms
| [1] |
Tao L, Feng W X, Wang Y R, et al. Effects of microecological agents on the fermentation quality, nutrition composition and in situ ruminal degradability of corn stalk silage. Acta Prataculturae Sinica, 2016, 25(9): 152-160. |
| [2] |
陶莲, 冯文晓, 王玉荣, 微生态制剂对玉米秸秆青贮发酵品质、营养成分及瘤胃降解率的影响. 草业学报, 2016, 25(9): 152-160. |
| [3] |
Ke W C, Ding W R, Xu D M, et al. Effects of addition of malic or citric acids on fermentation quality and chemical characteristics of alfalfa silage. Journal of Dairy Science, 2017, 100(11): 8958-8966. |
| [4] |
Zhang Y, Huang X Y, Chen X Z, et al. Effects of fermented Hypsizygus marmoreus mushroom residue on slaughter performance and mutton quality of goats. Acta Prataculturae Sinica, 2022, 31(9): 195-205. |
| [5] |
张耀, 黄小云, 陈鑫珠, 海鲜菇菌糠发酵饲料对山羊屠宰性能及肉品质的影响. 草业学报, 2022, 31(9): 195-205. |
| [6] |
Guo J, Xie Y, Yu Z, et al. Effect of Lactobacillus plantarum expressing multifunctional glycoside hydrolases on the characteristics of alfalfa silage. Applied Microbiology and Biotechnology, 2019, 103(19): 7983-7995. |
| [7] |
Jiang C Y, Wu Y H, Wang T Y, et al. The screening of symbiotic strain of producing energy feeds with potato residues by solid-state fermentation. Feed Industry, 2012, 33(11): 37-39. |
| [8] |
江成英, 吴耘红, 王拓一, 固态发酵马铃薯渣生产能量饲料共生菌株的筛选. 饲料工业, 2012, 33(11): 37-39. |
| [9] |
Animal Husbandry. Nutrient requirenments of meat-type sheep and goat: NY/T 816-2021. Beijing: China Agriculture Press, 2022. |
| [10] |
全国畜牧业标准化技术委员会. 肉羊营养需要量: NY/T 816-2021. 北京: 中国农业出版社, 2022. |
| [11] |
Zhang L Y. Feed analysis and feed quality testing technology. Beijing: China Agricultural University Press, 2007. |
| [12] |
张丽英. 饲料分析及饲料质量检测技术. 北京: 中国农业大学出版社, 2007. |
| [13] |
Van Soest P J, Robe Rtson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
| [14] |
Zhang C, Li J, Wang Y P, et al. Comparison of determination of dietary nutrient digestibility by different endogenous indicator methods and total feces collection method for goat. Chinese Journal of Animal Nutrition, 2020, 32(7): 3274-3281. |
| [15] |
张晨, 李静, 王云鹏, 全收粪法与不同内源指示剂法测定山羊饲粮中养分消化率的比较. 动物营养学报, 2020, 32(7): 3274-3281. |
| [16] |
Feng Z C, Gao M. Improvement of a colorimetric method for determination of ammonia nitrogen in rumen fluid. Animal Husbandry and Feed Science, 2010, 31(Z1): 37. |
| [17] |
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(Z1): 37. |
| [18] |
Qin W L. Determination of rumen volatile fatty acids by means of gas chromatography. Journal of Nanjing Agricultural College, 1982(4): 110-116. |
| [19] |
秦为琳. 应用气相色谱测定瘤胃挥发性脂肪酸方法的研究改进. 南京农学院学报, 1982(4): 110-116. |
| [20] |
Zhao R J, Yan H Y, Tan Y P, et al. CTAB method for extracting animal DNA. Science and Technology of West China, 2011, 10(21): 7-8. |
| [21] |
赵瑞杰, 严海燕, 谭艳平, CTAB法提取动物DNA. 中国西部科技, 2011, 10(21): 7-8. |
| [22] |
Kim T I, Mayakrishnan V, Lim D H, et al. Effect of fermented total mixed rations on the growth performance, carcass and meat quality characteristics of Hanwoo steers. Animal Science Journal, 2017, 89(3): 606-615. |
| [23] |
Zhou C. Optimization of fermentation conditions in rape straw and its effects on growth performances and rumen fermentation. Nanjing: Nanjing Agricultural University, 2021. |
| [24] |
周闯. 油菜秸秆发酵条件优化及对山羊生长性能、瘤胃发酵的影响. 南京: 南京农业大学, 2021. |
| [25] |
Su X Y, Shen Y A, Wang Y P. Effects of compound probiotic fermented feed on growth performance, nutrient apparent digestibility, fecal microbial flora, and serum indexes of mutton sheep. Feed Research, 2024, 47(4): 13-17. |
| [26] |
苏晓月, 沈亚安, 王艳萍. 复合益生菌发酵饲料对肉羊生长性能、养分表观消化率、粪便微生物菌群和血清指标的影响. 饲料研究, 2024, 47(4): 13-17. |
| [27] |
Han Y J. Effects of microbial fermentation of straw on production performance and nutrients apparent digestibility for mutton sheep. Baoding: Hebei Agricultural University, 2015. |
| [28] |
韩颖洁. 微生物发酵秸秆对肉羊生产性能和营养物质表观消化率的影响. 保定: 河北农业大学, 2015. |
| [29] |
Ahuja V, Bhatt A K. Trichoderma viride (MTCC 800): a potential candidate for agri-horti waste utilization by solid state fermentation. International Journal of Environmental Science and Technology, 2018, 15(12): 2679-2684. |
| [30] |
Yang Z K, Yin Y J, Xu W W, et al. Enzymatic properties of cellulase and its application in livestock and poultry production. Chinese Journal of Animal Science, 2024, 60(5): 88-93. |
| [31] |
阳治康, 殷运菊, 徐伟伟, 纤维素酶的酶学特性及在畜禽生产中的应用研究进展. 中国畜牧杂志, 2024, 60(5): 88-93. |
| [32] |
Liu W, Yu F M, Ma Q P, et al. Application of xylanase in silage and ruminant diet. Acta Agrestia Sinica, 2024, 32(1): 331-339. |
| [33] |
刘伟, 于凤民, 马千鹏, 木聚糖酶在青贮及反刍动物日粮中的应用. 草地学报, 2024, 32(1): 331-339. |
| [34] |
Kieliszek M, Kot A M, Bzducha-Wróbel A, et al. Biotechnological use of Candida yeasts in the food industry: A review. Fungal Biology Reviews, 2017, 31(4): 185-198. |
| [35] |
Zhou H, Wang C, Ye J, et al. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Animal Science Journal, 2015, 86(8): 790-799. |
| [36] |
Huang J, Han Y Z, Pan S L, et al. Effects of different energy and protein levels on growth performance, serum biochemical indexes and economic benefits of porcupine. Animal Husbandry & Veterinary Medicine, 2021, 53(5): 31-36. |
| [37] |
黄晶, 韩云珍, 潘书磊, 不同能量和蛋白质水平日粮对豪猪生长性能、血清生化指标及经济效益的影响. 畜牧与兽医, 2021, 53(5): 31-36. |
| [38] |
Guo Y X, Li H B, Lin Y T, et al. Effects of partial substitution of peanut vine by semi-dry ammoniated wheat straw silage on lactation performance, nutrient digestibility and serum indices of Laoshan dairy goats. Chinese Journal of Animal Nutrition, 2023, 35(5): 3154-3163. |
| [39] |
郭艺璇, 李海滨, 林英庭, 半干氨贮麦秸替代部分花生秧对崂山奶山羊产奶性能、养分消化率以及血清指标的影响. 动物营养学报, 2023, 35(5): 3154-3163. |
| [40] |
Huo X, Wang A L, Yang J M. Antioxidant effects of sulfur-containing amino acids. Bulletin of Biology, 2006, 41(4): 3-4. |
| [41] |
霍湘, 王安利, 杨建梅. 含硫氨基酸的抗氧化作用. 生物学通报, 2006, 41(4): 3-4. |
| [42] |
Lu J, Zhang X, Liu Y, et al. Effect of fermented corn-soybean meal on serum immunity, the expression of genes related to gut immunity, gut microbiota, and bacterial metabolites in grower-finisher pigs. Frontiers in Microbiology, 2019, 10: 2620. |
| [43] |
Bu Y, Zheng N, Wang J Q, et al. Research progress on immunoglobulin regulating gastrointestinal health and microbial function in animals. China Animal Husbandry & Veterinary Medicine, 2022, 49(10): 3800-3808. |
| [44] |
卜莹, 郑楠, 王加启, 免疫球蛋白调控动物胃肠道健康及微生物功能的研究进展. 中国畜牧兽医, 2022, 49(10): 3800-3808. |
| [45] |
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Frontiers in Immunology, 2014, 5: 520. |
| [46] |
Keyt B A, Baliga R, Sinclair A M, et al. Structure, function, and therapeutic use of IgM antibodies. Antibodies, 2020, 9(4): 53. |
| [47] |
Chen K, Chen H, Liu D J. Effects of fermented feed on goat production performance. China Feed, 2018(2): 25-29. |
| [48] |
陈柯, 陈华, 刘大军. 微生物发酵秸秆对山羊生产性能的影响及其机理研究. 中国饲料, 2018(2): 25-29. |
| [49] |
Xiang S W, Zheng L, Zhu L B, et al. Fermentation process of Candida utilis for selenium-enriched and production of glutathione. Science and Technology of Food Industry, 2017, 38(1): 165-168, 174. |
| [50] |
项驷文, 郑蕾, 朱龙宝, 产朊假丝酵母富硒及产谷胱甘肽的培养工艺. 食品工业科技, 2017, 38(1): 165-168, 174. |
| [51] |
Gong L, Wang B, Mei X, et al. Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers. Animal Science Journal, 2018, 89(11): 1561-1571. |
| [52] |
Jang S, Lee D, Jang I S, et al. The culture of Pediococcus pentosaceus T1 inhibits Listeria proliferation in salmon fillets and controls maturation of kimchi. Food Technology Biotechnology, 2015, 53(1): 29-37. |
| [53] |
Cao Z, Pan H, Tong H, et al. In vitro evaluation of probiotic potential of Pediococcus pentosaceus L1 isolated from paocai—a Chinese fermented vegetable. Annals of Microbiology, 2015, 66(3): 963-971. |
| [54] |
Jiang S, Cai L, Lv L, et al. Pediococcus pentosaceus, a future additive or probiotic candidate. Microbial Cell Factories, 2021, 20(1): 45. |
| [55] |
Xing B S, Han Y, Cao S, et al. Cosubstrate strategy for enhancing lignocellulose degradation during rumen fermentation in vitro: Characteristics and microorganism composition. Chemosphere, 2020, 250: 126104. |
| [56] |
Jiang N, Li X W, Zhang N, et al. Effect of different dietary energy and protein levels on rumen fermentation parameters and rumen microflora in growing yaks. China Herbivore Science, 2024, 44(2): 18-26. |
| [57] |
姜南, 李学威, 张楠, 日粮不同能量和蛋白质水平对生长期牦牛瘤胃发酵参数及瘤胃菌群的影响. 中国草食动物科学, 2024, 44(2): 18-26. |
| [58] |
Lee J E, Lee S, Sung J, et al. Analysis of human and animal fecal microbiota for microbial source tracking. The ISME Journal, 2011, 5(2): 362-365. |
| [59] |
Li M, Zhou M, Adamowicz E, et al. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis. Studies of Veterinary Microbiology, 2012, 155(1): 72-80. |
| [60] |
Hook S E, Steele M A, Northwood K S, et al. Impact of subacute ruminal acidosis (SARA) adaptation and recovery on the density and diversity of bacteria in the rumen of dairy cows. Studies of FEMS Microbiology Ecology, 2011, 78(2): 275-284. |
| [61] |
Guo W, Guo X J, Xu L N, et al. Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep. Animal, 2022, 16(7): 100576. |
| [62] |
Ye Y Z, Xia Z Q, Lou Y W, et al. Effect of microbial fermentation feed on fattening performance, microflora communities of Huyang sheep. Acta Agriculture Universitatis Jiangxiensis, 2021, 43(4): 881-890. |
| [63] |
叶以哲, 夏宗群, 娄佑武, 微生物发酵秸秆日粮对湖羊育肥性能及其肠道微生物群落结构的影响. 江西农业大学学报, 2021, 43(4): 881-890. |
| [64] |
Huang H L. Effects of microbial fermentation of peanut straw feed on intestinal microflora and preliminary application of meat goat. Nanchang: Jiangxi Agricultural University, 2020. |
| [65] |
黄海玲. 微生物发酵花生秸秆对肉山羊肠道微生物群落结构的影响及初步应用. 南昌: 江西农业大学, 2020. |
| [66] |
Avgustin G, Wallace R J, Flint H J. Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. International Journal of Systematic Bacteriology, 1997, 47(2): 284-288. |
| [67] |
Zhang X J, Wang L Z. Effects of dietary neutral detergent fibre level on structure and composition of rumen bacteria in goats. Chinese Journal of Animal Nutrition, 2018, 30(4): 1377-1386. |
| [68] |
张雪娇, 王立志. 饲粮中性洗涤纤维水平对山羊瘤胃细菌结构及组成的影响. 动物营养学报, 2018, 30(4): 1377-1386. |
| [69] |
Wang J, Zhang L Q, Wang W L, et al. Effects of caragana fermented feed on growth performance and rumen flora of Ningxia Tan sheep. Chinese Journal of Animal Nutrition, 2023, 35(2): 1035-1045. |
| [70] |
王锦, 张连全, 王文亮, 柠条发酵饲料对宁夏滩羊生长性能及瘤胃微生物区系的影响. 动物营养学报, 2023, 35(2): 1035-1045. |
| [71] |
Xu Y X, Li Z P, Shen J S, et al. Microbe-mediated ruminal ammonia production in ruminants and its impacts on rumen function. Acta Microbiologica Sinica, 2019, 59(5): 781-788. |
| [72] |
徐诣轩, 李志鹏, 申军士, 微生物介导反刍动物瘤胃氨生成及其对瘤胃功能的影响. 微生物学报, 2019, 59(5): 781-788. |
| [73] |
Wang H R, Qin T, Wang C. Effects of artemisinine on the rumen fermentation and microbial nitrogen recycling rate in goats. Scientia Agricultura Sinica, 2014, 47(24): 4904-4914. |
| [74] |
王洪荣, 秦韬, 王超. 青蒿素对山羊瘤胃发酵和微生物氮素微循环的影响. 中国农业科学, 2014, 47(24): 4904-4914. |
| [75] |
Yang C T, Diao Q Y, Si B W, et al. Absorption and regulation of volatile fatty acids in the ruminal epithelium. Chinese Journal of Animal Science, 2015, 51(7): 78-83. |
| [76] |
杨春涛, 刁其玉, 司丙文, 挥发性脂肪酸在反刍动物瘤胃上皮吸收转运及调节作用. 中国畜牧杂志, 2015, 51(7): 78-83. |
| [77] |
Lai A Q, Jin Y D, Chen B L, et al. Effects of fermented sugarcane bagasse on growth performance, nutrient apparent digestibility, rumen fermentation characteristics and rumen microflora of beef cattle. Chinese Journal of Animal Nutrition, 2024, 36(3): 1685-1697. |
| [78] |
赖安强, 金亚东, 陈彬龙, 发酵甘蔗渣对肉牛生长性能、养分表观消化率、瘤胃发酵特性和瘤胃菌群的影响. 动物营养学报, 2024, 36(3): 1685-1697. |
| [79] |
Wang X F, Gao Y, Tian F, et al. Effects of microbial fermented expanded straw feed on growth performance and gastrointestinal tract development of Dorper and Thin-tailed Han crossbred sheep. Animal Husbandry and Feed Science, 2022, 43(2): 28-34. |
| [80] |
王晓飞, 高源, 田丰, 膨化秸秆微生物发酵饲料对杜寒杂交肉羊生长性能和胃肠道发育的影响. 畜牧与饲料科学, 2022, 43(2): 28-34. |
| [81] |
Jin H, Bai Y, Deng M Y, et al. Effects of fermented feed on production performance, nutrient apparent digestibility, rumen fermentation characteristics and meat quality of fattening Hu sheep. Journal of Nanjing Agricultural University, 2024, 47(1): 151-156. |
| [82] |
金宏, 柏杨, 邓孟云, 发酵饲料对育肥湖羊生产性能、养分表观消化率、瘤胃发酵特性及肉品质的影响. 南京农业大学学报, 2024, 47(1): 151-156. |
| [83] |
Kyawt Y Y, Aung M, Xu Y, et al. Dynamic changes of rumen microbiota and serum metabolome revealed increases in meat quality and growth performances of sheep fed bio-fermented rice straw. Journal of Animal Science and Biotechnology, 2024, 15(1): 34. |
江苏现代农业产业技术体系建设专项资金(JATS [2023]478)
江苏现代农业产业技术体系建设专项资金(JATS [2023]162)
启东市科技项目(现代农业)(2022-3)
/
| 〈 |
|
〉 |