巨菌草对育肥从江香猪生长性能及肠道健康的影响

张敏 ,  杨锐 ,  黄逸州 ,  林芷昕 ,  郑贤跃 ,  刘庆华 ,  高玉云 ,  林冬梅 ,  林占熺 ,  金灵

草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 171 -188.

PDF (1942KB)
草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 171 -188. DOI: 10.11686/cyxb2024238
研究论文

巨菌草对育肥从江香猪生长性能及肠道健康的影响

作者信息 +

Effects of Pennisetum giganteum on the growth performance and intestinal health of finishing Congjiang Xiang pigs

Author information +
文章历史 +
PDF (1988K)

摘要

本试验旨在探究巨菌草替代不同水平基础饲粮对育肥从江香猪生长性能及肠道健康的影响。选取6月龄体重相近的健康从江香猪30头,随机分为3组(每组5个重复,每个重复2头)。对照组饲喂100%基础饲粮,试验Ⅰ、Ⅱ组分别用新鲜青绿巨菌草替代10%、20%基础饲粮,试验期90 d。通过测定育肥从江香猪生长性能、肠道发育、肠道机械屏障和盲肠菌群结构,并进行经济效益分析,为巨菌草在猪的生产应用中提供理论依据。本试验主要结果如下:1)生长性能:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪生长性能及胴体性状各指标无显著差异(P>0.05)。巨菌草不计成本时,与对照组相比,试验Ⅰ组的增重成本降低8.73%,试验Ⅱ组降低11.59%;巨菌草按市场价格0.35元·kg-1计算时,试验Ⅰ组的增重成本降低2.78%,试验Ⅱ组增加1.35%。2)肠道发育:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪胃的相对重量显著提高(P<0.05),小肠相对重量有升高的趋势(P=0.092)。与对照组相比,试验Ⅰ组育肥从江香猪回肠隐窝深度显著降低(P<0.05),回肠绒毛高度/隐窝深度(V/C)、空肠GLP-2和回肠IGF-1R基因表达量显著提高(P<0.05);试验Ⅱ组育肥从江香猪回肠绒毛高度、V/C及空肠GLP-2基因表达量显著提高(P<0.05)。3)肠道免疫及机械屏障:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪回肠IFN-γ含量显著降低,试验Ⅱ组空肠TGF-β含量显著提高(P<0.05);试验Ⅰ、Ⅱ组回肠ZO-1基因表达量显著提高,试验Ⅱ组空肠Occludin基因表达量显著提高(P<0.05)。4)盲肠微生物区系:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪Shannon指数显著提高,链球菌属相对丰度显著下降(P<0.05)。试验Ⅰ组和试验Ⅱ组毛螺菌科未分类菌属有上升趋势(P=0.065),螺旋体门(P=0.085)、密螺旋体属(P=0.085)有下降趋势。综上所述,巨菌草替代部分基础饲粮对育肥从江香猪生长性能、胴体性状无显著影响,但可提高经济效益并促进胃肠道的发育,提升肠道屏障功能,有利于肠道健康。巨菌草不计成本时,替代20%基础饲粮为宜,巨菌草按市场价格0.35元·kg-1计算时,替代10%基础饲粮为宜。

Abstract

The aim of this study was to determine the effects of dietary supplementation with Pennisetum giganteum on the growth performance and intestinal health of finishing Congjiang Xiang pigs. Thirty 6-month-old healthy Congjiang Xiang pigs of similar weight were selected and randomly divided into three groups (five replicates per group, two pigs per replicate). The control group was fed with a basal diet, and experimental groups Ⅰ and Ⅱ were fed with the basal diet with 10% and 20% (w/w) replaced with fresh P. giganteum. The experimental period was 90 days. The growth performance, intestinal development, and the structures of the intestinal mechanical barrier and cecal flora were analyzed, and the economic benefits were estimated. The main results were as follows: 1) Growth performance: Compared with the control group, groups Ⅰ and Ⅱ showed no significant differences in growth performance or carcass traits (P>0.05). When the cost of P. giganteum was not considered, groups Ⅰ and Ⅱ had lower weight gain costs (reduced by 8.73% and 11.59%, respectively) than that of the control group. When the cost of P. giganteum was calculated according to the market price of 0.35 CNY·kg-1, group Ⅰ still had a lower weight gain cost (2.78% lower) than that of the control, but the weight gain cost of experiment group Ⅱ was increased by 1.35%. 2) Intestinal development: Compared with the control group, groups Ⅰ and Ⅱ had significantly higher relative weight of the stomach (P<0.05), and a trend of higher relative weight of the small intestine (P=0.092). Compared with the control group, group Ⅰ showed significantly decreased ileal crypt depth (P<0.05), and significantly increased ileal height/crypt depth (V/C) and transcript levels of GLP-2 in the jejunum and IGF-1R in the ileum (P<0.05). Compared with the control group, group Ⅱ showed significantly increased ileal villus height, V/C, and gene transcript level of jejunal GLP-2P<0.05). 3) Intestinal immunity and mechanical barriers: Compared with the control group, groups Ⅰ and Ⅱ showed significantly decreased ileal IFN-γ content, and group Ⅱ showed significantly increased jejunal TGF-β content (P<0.05). Comparing gene transcript levels with those in the control, groups Ⅰ and Ⅱ showed significantly increased transcript levels of ZO-1 in the ileum (P<0.05), and group Ⅱ showed significantly increased transcript levels of Occludin in the jejunum (P<0.05). 4) Cecal microbes: Shannon index was significantly higher in both experimental groups than in the control (P<0.05). The relative abundance of Streptococcus was significantly lower in both experimental groups than in the control (P<0.05). The experimental groups showed trends of increased abundance of unclassified_f__LachnospiraceaeP=0.065) and decreased abundance of Spirochaetota (P=0.085) and TreponemaP=0.085). In conclusion, replacing part of the basal diet with P. giganteum had no significant effect on the growth performance or carcass traits of finishing Congjiang Xiang pigs, but it improved the economic efficiency, promoted gastrointestinal tract development, and enhanced intestinal barrier function, which were conducive to intestinal health. These results show that 20% of the basal diet can be replaced with P. giganteum if its cost is not considered, and 10% of the basal diet can be replaced with P. giganteum if it is costed at the market price of 0.35 CNY·kg-1. These findings provide scientific data for assessing the application of P. giganteum in pig production.

Graphical abstract

关键词

巨菌草 / 育肥从江香猪 / 生长性能 / 盲肠菌群 / 肠道健康

Key words

Pennisetum giganteum / finishing Congjiang Xiang pigs / growth performance / cecal microflora / intestinal health

引用本文

引用格式 ▾
张敏,杨锐,黄逸州,林芷昕,郑贤跃,刘庆华,高玉云,林冬梅,林占熺,金灵. 巨菌草对育肥从江香猪生长性能及肠道健康的影响[J]. 草业学报, 2025, 34(05): 171-188 DOI:10.11686/cyxb2024238

登录浏览全文

4963

注册一个新账户 忘记密码

饲料是畜牧业赖以发展的物质基础,饲料成本约占整个畜禽养殖成本的60%~70%1。目前饲料以玉米(Zea mays)-豆粕型基础饲粮为主,但我国玉米、大豆(Glycine max)仍需进口,对外依存度较高,受国际影响较大。为保障饲料粮供需平衡、稳定粮食安全,2021年农业农村部畜牧兽医局发布了关于推进玉米豆粕减量替代工作的通知,倡导充分挖掘利用现有饲料资源2,充分合理地开发利用饲草资源可以节约玉米、豆粕,降低饲养成本,提高经济效益。巨菌草(Pennisetum giganteum)作为饲草资源,优质、高产、抗逆性强、株高可达3~5 m,原产于非洲,由福建农林大学菌草研究所引进并选育,具有较大的发展潜能3。黄晓飞等4发现在奶牛日粮中添加22.3%的巨菌草青贮料可显著提升奶牛的产奶量,并提高经济效益。邓新为等5-6的研究报道在七彩山鸡日粮中用巨菌草替代部分麸皮可提高七彩山鸡的生长性能、免疫器官指数及降低盲肠中沙门氏菌数量。裘博文等7还表明在日粮中添加8%巨菌草可显著提升七彩山鸡肠道绒毛高度。巨菌草在反刍动物及家禽中已有较多研究,但在猪上的研究较少。从江香猪作为小型猪种,体型矮小、抗逆性强、耐粗饲,能较好地利用青绿饲料8-9。因此,本试验通过探究巨菌草替代10%、20%基础饲粮对从江香猪的生长性能、肠道发育及肠道屏障功能的影响,并进行经济效益分析,以探究巨菌草替代部分基础饲粮的可行性,以期达到玉米豆粕减量替代效果,并为巨菌草养猪提供数据支撑。

1 材料与方法

1.1 试验设计

试验于2022年9至12月在南靖绿明生态农业有限公司进行。选取30头6月龄从江香猪,随机分为3组,每组5个重复,每个重复2头,公母各半,重复之间体重相近。巨菌草直接替代部分基础饲粮更符合农村养殖户应用青绿饲料饲喂猪的情况并便于养殖户现场应用,参照Raj等10的试验设计,对照组饲喂基础饲粮,试验Ⅰ组和试验Ⅱ组用新鲜青绿巨菌草分别替代10%、20%的基础饲粮。巨菌草当天收割,用碎草机(45型,山东)切碎后与基础饲粮混合后进行饲喂,1.8~2.0 m新鲜青绿巨菌草干物质含量约为14.6%,饲料干物质含量约为88%,所以巨菌草按6∶1的重量替代基础饲粮,即6 kg巨菌草替代1 kg基础饲粮。预饲期7 d,试验期90 d,由于猪胃容量有限,为使猪能够采食更多的巨菌草,参考王进波11的试验设计对猪的基础饲粮进行限制饲喂,本试验对照组育肥从江香猪按体重的3.5%进行饲喂,试验组按比例进行替代饲喂,自由饮水,按正常免疫程序进行免疫接种。基础饲粮参照国家标准《猪营养需要量》(肉脂型,GB/T 39235-2020)12营养需要配制粉状配合饲料,饲粮组成及营养水平见表1

1.2 测定指标及方法

1.2.1 生长性能测定

记录试验猪每日喂料量和余料量,计算基础饲粮及巨菌草平均日采食量(average daily feed intake, ADFI)。试验期第1和91天8:00对猪空腹称重,在前一天20:00断料,记录试验初重、试验末重。

平均日增=(试验末重-试验初重)/试验天数

1.2.2 经济效益分析

根据试验期基础饲粮及巨菌草的总采食量和价格、试验期增重,计算单位增重成本。

单位增重成本(kg-1)=基础饲粮总采食量×基础饲粮价格+巨菌草总采食×巨菌草价试验末重-试验初重
节约增重成本(%)=各组别单位增重成-对照组单位增重成对照组单位增重成×100

1.2.3 胴体性状测定

试验期结束后,每个重复选取一只接近每组平均体重的猪进行屠宰。猪放血屠宰后,参照《畜禽屠宰操作规程 生猪》(GB/T 17236-2019)13去除头、蹄,开膛,剥离内脏,拆分胴体。参照《瘦肉型猪胴体性状测定技术规范》(NY/T 825-2004)14测定屠宰率、板油率、背膘厚和眼肌面积。

1.2.4 胃肠道相对重量及长度

从江香猪屠宰分离胃和各肠段后,去除其中内容物,称量胃、小肠、大肠绝对重量,计算胃肠道相对重量。在自然伸展状态下,测量小肠、大肠绝对长度,计算各肠段相对长度。

胃肠道相对重(gkg-1)=胃肠道绝对重(g)/宰前活重(kg)
肠道相对长度(cmkg-1)=肠道绝对长度(cm)/宰前活重(kg)

1.2.5 肠道形态结构

空肠、回肠组织固定、脱水、包埋、切片、染色和封片等处理后,使用光学显微镜(Eclipse Ci-L,Nikon,日本)测量其绒毛高度、隐窝深度,并计算绒毛高度/隐窝深度(villous height/crypt depth,V/C)值。

1.2.6 肠道发育相关基因表达

刮取空肠、回肠黏膜后按照TRNzol Universal总RNA提取试剂说明书提取黏膜的RNA,将提取的RNA按照Evo M-MLV反转录预混型试剂盒(长沙)说明书进行反转录制备cDNA,最后按照Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix说明书进行荧光定量PCR检测胰岛素样生长因子-1(insulin-like growth factor 1,IGF-1)、胰岛素样生长因子-1受体(insulin-like growth factor 1 receptor,IGF-1R)、胰高血糖素样肽-2(glucagon-like peptide-2,GLP-2)基因表达水平,肠道发育相关基因和内参基因的引物序列见表2。采用2-∆∆Ct方法18计算基因的相对表达量。

1.2.7 肠道细胞因子含量测定

取3 cm空肠、回肠并用生理盐水将内容物冲洗干净,灭菌剪刀剪开肠段,用载玻片轻轻刮取黏膜。按照南京建成生物工程研究所酶联免疫(ELISA)试剂盒说明书测定空肠、回肠黏膜的白介素-1β(interleukin-1β, IL-1β)、白介素-6(interleukin-6, IL-6)、白介素-10(interleukin-10, IL-10)、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、干扰素-γ(interferon-γ, IFN-γ)、转化生长因子-β(transforming growth factor-β, TGF-β)含量。

1.2.8 小肠黏膜紧密连接蛋白基因表达

刮取空肠、回肠黏膜后按照TRNzol Universal总RNA提取试剂说明书提取黏膜的RNA,将提取的RNA按照Evo M-MLV反转录预混型试剂盒说明书进行反转录制备cDNA,最后按照Hieff UNICON® Universal Blue qPCR SYBR Green Master Mix说明书进行荧光定量PCR检测闭合小环蛋白-1(Zonula occludens-1,ZO-1)、闭合蛋白-1(Claudin-1)、闭锁蛋白(Occludin)的基因表达水平,采用2-∆∆Ct方法18计算基因的相对表达量。小肠紧密连接蛋白基因和内参基因的引物序列见表3

1.2.9 巨菌草对育肥从江香猪盲肠微生物的影响

从江香猪屠宰后,取部分盲肠内容物于无菌冻存管中,于-80 ℃冰箱保存待测,通过Illumina-MiSeq高通量测序技术对育肥从江香猪的盲肠微生物菌群进行Alpha多样性分析、主坐标分析,并测定门水平和属水平菌群相对丰度。

1.3 数据统计分析

采用Excel 2019整理试验数据,用SPSS 26.0软件进行单因素方差分析(one-way ANOVA),并采用Duncan氏法进行多重比较,试验结果用平均值±标准误表示,P<0.05为差异显著,0.05≤P<0.10为有差异显著趋势。用GraphPad Prism 9.4.1软件对qRT-PCR数据分析结果作图。

2 结果与分析

2.1 巨菌草对育肥从江香猪生长性能的影响

各组间育肥从江香猪生长性能指标差异不显著(P>0.05,表4)。

2.2 巨菌草对育肥从江香猪经济效益的影响

当巨菌草不计成本时(农民自己种植),与对照组相比,试验Ⅰ组的增重成本降低8.73%,试验Ⅱ组的增重成本降低11.59%。当巨菌草按市场价格0.35元·kg-1计算时,与对照组相比,试验Ⅰ组的增重成本降低2.78%,试验Ⅱ组的增重成本增加1.35%(表5)。

2.3 巨菌草对育肥从江香猪胴体性状的影响

各组间育肥从江香猪胴体性状指标差异不显著(P>0.05,表6)。与试验Ⅰ组相比,试验Ⅱ组育肥从江香猪屠宰率有下降趋势(P=0.078)。

2.4 巨菌草对育肥从江香猪胃肠道相对重量及长度的影响

与对照组相比,试验Ⅰ组和试验Ⅱ组育肥从江香猪胃相对重量均显著提高(P<0.05,表7),小肠相对重量有上升趋势(P=0.092)。各组间其他胃肠道相对重量及长度指标无显著差异(P>0.05)。

2.5 巨菌草对育肥从江香猪肠道形态结构的影响

与对照组相比,试验Ⅰ组育肥从江香猪回肠隐窝深度显著下降(P<0.05,表8),回肠V/C显著上升(P<0.05)。试验Ⅱ组回肠绒毛高度和V/C显著上升(P<0.05)。各组间育肥从江香猪空肠肠道形态结构各指标无显著差异(P>0.05)。

2.6 巨菌草对育肥从江香猪肠道发育相关基因的影响

与对照组相比,试验Ⅰ和试验Ⅱ组空肠GLP-2基因表达量显著上升(P<0.05,图1),各组间其他基因表达量无显著差异(P>0.05)。与对照组相比,试验Ⅰ组回肠IGF-1R基因表达量显著上升(P<0.05,图2),各组间其他基因表达量无显著差异(P>0.05)。

2.7 巨菌草对育肥从江香猪肠道细胞因子的影响

与对照组相比,试验Ⅱ组育肥从江香猪空肠TGF-β含量显著上升(P<0.05,表9),各组间空肠其他细胞因子含量无显著差异(P>0.05)。与对照组相比,试验Ⅰ和Ⅱ组育肥从江香猪回肠IFN-γ含量显著下降(P<0.05,表10),回肠各组间其他细胞因子含量无显著差异(P>0.05)。

2.8 巨菌草对育肥从江香猪肠道紧密连接蛋白基因表达的影响

与对照组相比,试验Ⅱ组育肥从江香猪空肠黏膜Occludin的基因表达量显著上升(P<0.05,图3),各组间其他基因表达量无显著差异(P>0.05)。与对照组相比,试验Ⅰ和Ⅱ组育肥从江香猪回肠黏膜ZO-1的基因表达量均显著上升(P<0.05,图4),各组间其他基因表达量差异不显著(P>0.05)。

2.9 巨菌草对从江香猪盲肠微生物的影响

2.9.1 测序数据及扩增子序列变异体(amplicon sequence variant, ASV)分析

对育肥从江香猪的15个盲肠食糜样本进行微生物测序,经过降噪和优化处理,获得718739个优化序列。运用DADA 2模型算法对这些序列进行进一步分析,共得到14773个不同的ASVs。随着不断增加抽取的样本数量,曲线呈逐渐平缓的趋势,这表明所测得的样本数据已足够丰富,能够充分反映样品中微生物的多样性(图5A)。此外,对照组、试验Ⅰ组和试验Ⅱ组各组间共有ASV数目为592个,各组特有ASV数目分别为:对照组4053个、试验Ⅰ组4820个、试验Ⅱ组4674个(图5B)。

2.9.2 Alpha多样性分析

与对照组相比,试验Ⅰ组和试验Ⅱ组育肥从江香猪盲肠微生物Alpha多样性中Shannon指数显著上升(P<0.05,表11)。Chao1指数和ACE指数各组间无显著差异(P>0.05)。

2.9.3 Beta多样性分析

基于Bray-Curtis距离的主坐标分析(principal co-ordinates analysis,PCoA)结果显示,对照组与试验Ⅰ、Ⅱ组盲肠微生物组间距离较远,表明组间微生物群落结构具有差异性(图6)。

2.9.4 门和属水平相对丰度分析

在门水平上,育肥从江香猪盲肠微生物主要优势菌门为厚壁菌门、拟杆菌门和螺旋体门,其中与对照组相比,试验Ⅰ组和试验Ⅱ组螺旋体门相对丰度呈下降趋势(P=0.085,图7A和表12)。属水平菌群相对丰度排名前10的菌属为乳杆菌属、链球菌属、毛螺菌科未分类菌属、UCG-005、密螺旋体属、norank_f__p-251-o5、狭义梭菌属1、克里斯滕森菌科R-7群、普雷沃菌科_UCG-003菌属、土孢杆菌属(图7B和表12)。其中与对照组相比,试验Ⅰ组和试验Ⅱ组链球菌属相对丰度显著下降(P<0.05),试验Ⅰ组和试验Ⅱ组毛螺菌科未分类菌属有上升趋势(P=0.065),密螺旋体属有下降趋势(P=0.085)。

3 讨论

3.1 巨菌草对育肥从江香猪生长性能的影响

生长性能是反映动物生长情况最直观的指标,受日粮组成、动物品种、畜禽生长环境等影响。本试验结果表明,巨菌草替代部分基础饲粮对育肥从江香猪生长性能无显著影响。徐佳玉等19研究表明在育肥黑猪饲粮中添加10%巨菌草对黑猪平均日增重无显著影响。朱雷等20研究发现黑麦草(Lolium perenne)替代10%~20%的基础饲粮对生长育肥猪的生长性能无显著影响。项延润21研究发现添饲0.5 kg·d-1皇竹草(Pennisetum sinese)替代3%基础饲粮,对育肥猪的日增重影响不显著。Wallenbecka等22研究表明在育肥猪饲粮中以代谢能为基础用粉碎青贮料与基础饲粮混合制粒替代20%基础饲粮,对猪的平均日增重无显著影响。本研究结果与上述研究结果一致,可能因为育肥猪能够较好利用饲粮中的纤维,饲粮营养成分可满足猪的生长需要,使得替代部分基础饲粮对猪的生长性能无显著影响23。与上述研究结果不同的是,陈冬梅等24研究发现在20~50日龄四川白鹅饲粮中额外添加10%、15%的巨菌草粉可提高其生长性能。赵鹤青25也研究表明在七彩山鸡饲粮中额外添加8%的巨菌草可提高其日增重。究其原因可能与巨菌草饲喂方式和饲喂量、饲养动物等不同有关。

3.2 巨菌草对育肥从江香猪经济效益的影响

饲料成本会影响经济效益,牧草与精料相比价格更低,为了提升经济效益,已有较多牧草在猪饲粮中应用的研究。在一定条件下,在猪日粮中添加牧草可以提升经济效益,但牧草能够在多大程度上更加经济地为猪的生长发育提供营养,取决于猪对牧草的采食量、消化率以及与精料相比牧草的相对成本和可得性26。赵静27研究发现育肥猪饲粮中添加10%和15%的苜蓿(Medicago sativa)草粉替代部分玉米和豆粕,分别可使单位增重成本下降0.74和0.46元·kg-1,毛利润分别提高31.54和14.91元·头-1。项延润21研究表明在育肥猪饲粮中用0.5 kg·d-1皇竹草替代3%精饲料,每头平均可增加收益24.63元,但添饲1.0 kg·d-1皇竹草替代6%精料,头均减少收益31.87元。本试验结果表明,巨菌草不计入成本替代10%和20%基础饲粮均能降低增重成本,巨菌草按市场价格0.35元·kg-1计算时,替代10%基础饲粮可降低增重成本,但替代20%基础饲粮增重成本反而增加。经济效益受到基础饲粮价格、牧草价格、猪的生长性能共同影响,适宜的替代量可以提高经济效益,替代量过大反而会使经济效益降低。

3.3 巨菌草对育肥从江香猪胴体性状的影响

胴体性状可反映肉用畜禽体组织营养物质沉积情况28。胴体性状包括屠宰率、板油率、背膘厚、眼肌面积等指标。其中屠宰率可以反映猪的产肉性能进而影响经济效益,板油率、背膘厚和眼肌面积对评定胴体品质具有重要意义29。本试验结果表明,巨菌草替代20%基础饲粮与替代10%基础饲粮相比,屠宰率有下降的趋势,其他指标无显著差异。Galassi等30研究报道在育肥猪饲粮中添加12%麦(Triticum aestivum)麸对屠宰率无显著影响,但添加24%麦麸时屠宰率显著下降。徐佳玉等19研究发现在育肥黑猪饲粮中用粉碎巨菌草替代10%基础饲粮可显著提高其屠宰率,显著降低其背膘厚,对眼肌面积无显著影响。王进波11研究表明在生长育肥猪饲粮中用黑麦草替代10%、15%、20%基础饲粮其屠宰率均下降,眼肌面积无显著变化。赵静27研究发现在育肥猪饲粮中用苜蓿草粉替代5%、10%、15%、20%基础饲粮可增加其眼肌面积,但对屠宰率、背膘厚均无显著影响。前人对于牧草替代部分饲粮对猪胴体性状影响的结论不一致。造成这种差异的原因可能与牧草品种、牧草刈割长度、饲粮营养水平、饲养品种等不同有关。

3.4 巨菌草对育肥从江香猪胃肠道相对重量及长度的影响

胃肠道在营养物质吸收和免疫应答中起重要作用,与机体健康密切相关31。胃肠道相对重量及长度可以反映其发育情况。本试验结果表明,巨菌草替代部分基础饲粮可显著提高育肥从江香猪胃的相对重量,小肠相对重量有上升趋势。李文新32研究发现随着饲粮粗纤维水平上升,生长猪胃和小肠的相对重量上升。Ngoc等33研究报道与低纤维饲粮相比,高纤维饲粮可显著提高猪胃的绝对重量。Raj等34研究表明在基础饲粮中添加20%草粉,胃肠道绝对重量显著上升,小肠和大肠的绝对长度无显著差异。本试验结果与上述试验结果基本一致。表明高纤维饲粮可以促进消化道膨大,其原因可能是:1)饲粮纤维的含量增加使饲粮体积增大;2)高纤维饲粮的低能值效应,使动物的采食量代偿性增加,继而导致动物消化道体积的增加35-36

3.5 巨菌草对育肥从江香猪肠道形态结构的影响

小肠是营养物质吸收和代谢的主要器官。猪肠道上皮细胞包括吸收细胞、潘氏细胞、杯状细胞、内分泌细胞、微皱褶细胞,细胞间通过紧密连接、间隙连接、桥粒连接排列形成绒毛和隐窝37-38。小肠中的绒毛呈现向肠腔内突出的手指状结构,扩大了小肠的表面积,有利于营养吸收和物质代谢39。小肠隐窝是绒毛根部上皮陷入固有层形成的管状腺,位于隐窝中的肠道干细胞和祖细胞不断分裂和分化,以维持肠道稳态和组织完整性,隐窝深度可反映上皮细胞的生成率40-41。V/C增加可提升肠道对营养物质的消化吸收能力42。赵鹤青25研究发现在七彩山鸡饲粮中添加8%巨菌草,十二指肠、空肠、回肠绒毛高度均显著增加,添加12%巨菌草其十二指肠、空肠隐窝深度均显著下降。Adams等43研究表明在断奶仔猪饲粮中添加12%苜蓿可显著增加其空肠绒毛高度、V/C。Zhao等44研究报道生长育肥猪饲粮粗纤维水平为22.5%与粗纤维水平9%相比可显著提升十二指肠、空肠、回肠的绒毛高度和V/C。本试验结果显示,巨菌草替代部分基础饲粮可显著提高回肠绒毛高度、V/C,降低隐窝深度。本试验结果与上述研究结果基本一致。其原因可能是巨菌草替代部分基础饲粮使得在整体饲粮中纤维含量上升,纤维经肠道内微生物发酵产生短链脂肪酸,为肠道细胞分化和增殖提供能量,进而促进绒毛和隐窝的增殖发育45-46

3.6 巨菌草对育肥从江香猪肠道发育相关基因的影响

肠道生长发育受其相关基因的调控。IGF-1的合成主要由垂体生长激素控制,IGF-1可促进有丝分裂和抑制细胞凋亡,IGF-1也可与胰岛素共同调节新陈代谢47。在大多数促进有丝分裂和抗凋亡活动中,IGF-1由IGF-1R介导,IGF-1R也可影响细胞转化48。GLP-2是一种肽类激素,可通过促进隐窝细胞增殖和抑制细胞凋亡促进肠道生长,也可在TGF-β的介导下促进肠道伤口愈合,并通过增加肠系膜血流量,促进营养物质的消化吸收49-50。本试验结果表明巨菌草替代10%基础饲粮可提高育肥从江香猪空肠GLP-2、回肠IGF-1R基因表达量,替代20%基础饲粮可提高空肠GLP-2的基因表达量。Diao等51研究发现用甜菜(Beta vulgaris)浆作为纤维源[5.74%粗纤维(crude fiber, CF)]与基础日粮(1.5%CF)相比可显著增加生长猪空肠GLP-2IGF-1的mRNA表达水平,但对回肠GLP-2IGF1IGF1R表达量无显著影响。Schedle等52研究报道在断奶仔猪饲粮中添加3%麦麸可提升空肠中IGF1的表达量。He等53研究表明在生长猪日粮中额外添加0.5%的菊(Chrysanthemum morifolium)粉作为纤维源可显著提升猪回肠中GLP-2的基因表达量,但对IGF-1无显著影响。以上研究结果均表明日粮中纤维水平可提升部分肠道发育相关基因的表达量,本试验与其一致。其原因可能是饲粮中纤维水平上升使得肠道内短链脂肪酸含量上升,促进肠内分泌L细胞产生GLP-2并诱导其他生长发育相关基因的表达54

3.7 巨菌草对育肥从江香猪肠道细胞因子的影响

肠道是重要的消化器官,也是最大的免疫器官55,许多细胞因子介导肠道炎症反应,IL-1β、TNF-α、IL-6、IFN-γ均属于促炎细胞因子56。IL-1β可介导炎症并调节免疫反应、细胞增殖和分化57。IL-6可参与调节造血、产生急性期反应以及诱导炎症和肿瘤的产生58。TNF-α主要由单核巨噬细胞产生,可通过诱导肠上皮紧密连接通透性增加,使肠道产生炎症59。IFN-γ主要由活化的T细胞和大颗粒淋巴细胞产生,可参与免疫反应,具有促凋亡和抗增殖功能60-61。IL-10、TGF-β属于抗炎细胞因子。IL-10可调节免疫反应,抑制促炎细胞因子的产生和功能的发挥62。TGF-β参与多种细胞过程,可参与免疫调节、维持细胞稳态、细胞凋亡和胚胎发育63。Chen等64研究发现在仔猪日粮中添加10%麦麸可降低肠道TNF-αIL-1βIL-6基因表达量。Ding等65在3个品种的生长猪中均分别设置低纤维日粮组和高纤维日粮组进行研究发现,与低纤维水平日粮相比,饲喂高纤维日粮杜洛克猪回肠IL-1β、IL-6、IL-10、IFN-γ、TGF-β和TNF-α含量显著上升,但桃源黑猪和湘村黑猪饲喂不同纤维水平回肠细胞因子各指标均无显著差异。此外,Weber等66发现在断奶仔猪日粮中添加7.5%大豆壳,对空肠、回肠中IL-6IL-1βTNF-α的基因表达量无显著影响。本研究结果与前人64-66探究日粮纤维水平对猪肠道细胞因子含量影响的结果不一致,可能与猪的品种和纤维组成有关。本试验结果表明巨菌草替代10%基础饲粮可显著降低回肠IFN-γ含量,替代20%基础饲粮可显著提升空肠TGF-β含量、显著降低回肠IFN-γ含量。其原因可能是巨菌草替代部分基础饲粮使得纤维含量上升,纤维发酵后挥发性脂肪酸含量上升,挥发性脂肪酸通过抑制组蛋白去乙酰化酶和激活G蛋白偶联受体来调节炎性细胞因子的产生,从而维持肠道稳态67

3.8 巨菌草对育肥从江香猪肠道紧密连接蛋白基因表达的影响

肠道机械屏障由肠道上皮细胞和细胞间的紧密连接构成68。紧密连接是位于上皮细胞顶端的主要细胞间连接,以环状方式包裹细胞,将邻近的上皮细胞紧密连接,既是离子通道,也是抵御有害物质的屏障69-70。ZO-1是紧密连接的重要组成部分,作为紧密连接的支架蛋白,具有多个专门用于与蛋白质相互作用的结构域,可与Claudins、Occludin等多种蛋白质结合71。Claudin-1对紧密连接完整性具有重要作用,可调节离子和小分子在邻近细胞中的细胞旁转运、细胞间通讯和上皮细胞稳态,并且Claudin-1表达的增加可促进细胞增殖72-73。Occludin是一种可调节内皮和上皮结构和功能的多功能紧密连接蛋白,可参与调节大分子的细胞旁转运,也可作为还原型烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NADH)氧化酶影响细胞代谢74-75。饲粮中纤维水平会影响猪肠道中紧密连接蛋白的表达。Liu等76研究表明在仔猪饲粮中添加4.3%麦麸可增加空肠和回肠中ZO-1Claudin-1基因表达。Chen等77研究报道用10%麦麸替代断奶仔猪饲粮中10%膨化大豆可以显著提升仔猪回肠中ZO-1Occludin的基因表达量。Liu等78分别用纤维含量为3.14%的基础饲粮和6.86%的高纤维饲粮饲喂桃园猪,研究发现饲喂高纤维饲粮与基础饲粮的猪相比只显著提升了空肠中Claudin-1Occludin的表达量,并提高了回肠中ZO-1的表达量。本试验结果表明巨菌草替代10%基础饲粮可显著提升育肥从江香猪回肠ZO-1的基因表达量,替代20%基础饲粮可显著提升空肠Occludin和回肠ZO-1的基因表达量,与前人研究结果趋于一致。表明饲粮中纤维水平上升,可以提高肠道紧密连接蛋白的表达,从而改善肠道屏障完整性。

3.9 巨菌草对育肥从江香猪盲肠微生物的影响

肠道菌群的生态系统是复杂且动态的,肠道菌群与宿主存在共生关系,在维持宿主肠道健康中起重要作用79。饲料是影响猪肠道微生物群组成的重要因素80。Alpha多样性指标中Chao1指数和ACE指数可反映群落丰富度,Shannon指数可反映群落多样性81。本试验结果表明巨菌草替代部分基础饲粮可显著提高育肥从江香猪盲肠微生物的Shannon指数且PCoA分析中的菌群位置距离较远,表明巨菌草替代部分基础饲粮使菌群多样性提升,菌群结构发生改变。高崇敏等82研究显示在育肥猪饲粮中添加10%桂闽引象草(Pennisetum purpureum cv. Guiminyin)可显著提升Chao1、ACE、Shannon指数。Li等83研究也发现在生长猪饲粮中添加16%麦麸可显著提升Shannon和Chao1指数。这些研究结果均表明饲粮中纤维水平上升可使菌群多样性上升,本试验结果与其基本一致。

本试验3个组别优势菌门均为厚壁菌门、拟杆菌门和螺旋体门,与前人研究结果一致84-86。厚壁菌门可以利用纤维产生短链脂肪酸,尤其是丁酸盐87。拟杆菌门具有强降解蛋白质和碳水化合物的能力,并可分解日粮中多种难以消化的植物多糖,例如纤维素、果胶和木聚糖等88。本试验还显示巨菌草替代部分基础饲粮可使螺旋体门呈下降趋势。螺旋体门中含有多种常见于猪肠道的病原微生物,例如密螺旋体属89。Yu等81研究报道妊娠母猪饲粮中以甜菊(Stevia rebaudiana)渣为纤维源粗纤维含量9.15%和10.68%的组别与对照组相比可显著降低母猪粪便中Treponema_2的相对丰度。

本试验中排名前10的属为乳杆菌属、链球菌属、毛螺菌科未分类菌属、UCG-005、密螺旋体属、norank_f__p-251-o5、狭义梭菌属1、克里斯滕森菌科R-7群、普雷沃菌科_UCG-003菌属、土孢杆菌属。此外,与对照组相比,试验Ⅰ组和试验Ⅱ组在属水平上链球菌属相对丰度显著下降,密螺旋体属呈下降趋势,毛螺菌科未分类菌属呈上升趋势。链球菌属中部分菌群是致病菌,可能引起猪的多种疾病,如脑膜炎、败血症和关节炎4290。Gao等91研究表明在生长育肥藏猪饲粮中添加50%苜蓿,结肠链球菌属丰度会显著下降。Lachnospiraceae与纤维降解和短链脂肪酸的产生有关92。Pu等93研究发现在育肥猪饲粮中用脱脂米糠作为纤维源替代部分玉米可显著提升unclassified_f__Lachnospiraceae菌群相对丰度并显著降低链球菌属相对丰度。Petry等94研究发现在后备母猪中,与饲粮中含有7.5%中性洗涤纤维的低纤维组相比,含有21.9%中性洗涤纤维的高纤维组unclassified_ f__Lachnospiraceae中的部分菌群丰度上升,链球菌相对丰度下降。本试验中密螺旋体属、毛螺菌科未分类菌属变化与前人研究结果趋势一致。

本试验结果表明用巨菌草替代部分基础饲粮可提升菌群多样性,降低链球菌属的丰度,有提高毛螺菌科未分类菌属丰度的趋势。其原因可能是巨菌草替代部分基础饲粮使得饲粮纤维水平上升,纤维在发酵过程中作为底物被微生物降解发酵成短链脂肪酸,并且形成酸性环境,有助于微生物群的选择性增殖,并且抑制致病菌的生长,提高有益菌的数量,使肠道微生物群组成改变4679

4 结论

巨菌草替代部分基础饲粮对育肥从江香猪生长性能及胴体性状无显著影响,可增加从江香猪胃的相对重量,增加绒毛高度、降低隐窝深度、提升绒隐比,并显著提高肠道GLP-2IGF-1R基因表达量,有利于肠道发育。此外,可促进肠道OccludinZO-1基因表达,增强肠道机械屏障功能,降低链球菌属相对丰度并增加有益菌的丰度,有利于肠道健康。巨菌草不计成本时,替代20%基础饲粮可获得最大经济效益,巨菌草按市场价格0.35元·kg-1购买时,替代10%基础饲粮为宜。

参考文献

[1]

Liao X D, Zhang L Y, Lv L, et al. Survey on distribution of mineral contents in feedstuffs for livestock and poultry in China. Scientia Agricultura Sinica, 2019, 52(11): 1970-1972.

[2]

廖秀冬, 张丽阳, 吕林, 我国畜禽饲料资源中矿物元素含量分布的调查. 中国农业科学, 2019, 52(11): 1970-1972.

[3]

Anon. The Ministry of Agriculture and Rural Affairs has issued a work plan to promote the reduction and substitution of corn and soybean meal in feed. BeiFang MuYe, 2021(7): 5.

[4]

佚名. 农业农村部发布工作方案推进饲料中玉米、豆粕减量替代. 北方牧业, 2021(7): 5.

[5]

Li Y S, Zhou Y, Zhao X D, et al. Application of Pennisetum giganteum in livestock breeding. Feed Research, 2020, 43(7): 146-148.

[6]

李玉帅, 周岩, 赵晓登, 巨菌草在畜禽养殖中的应用. 饲料研究, 2020, 43(7): 146-148.

[7]

Huang X F, Meng Q X, Yang J X, et al. Effects of replacing the corn silage with Puelia sinese Roxb silage on production performance, composition of milk and economic benefits in dairy cows. China Animal Husbandry & Veterinary Medicine, 2017, 44(7): 1997-2002.

[8]

黄晓飞, 孟庆翔, 杨甲轩, 巨菌草青贮替代全株玉米青贮对奶牛生产性能、乳成分和经济效益的影响. 中国畜牧兽医, 2017, 44(7): 1997-2002.

[9]

Deng X W, Luo N, Sun Z H, et al. Application of Pennisetum giganteum in Phasianus colchicu fodder in northern Shaanxi. Chinese Wild Plant Resources, 2021, 40(3): 28-32.

[10]

邓新为, 罗娜, 孙志宏, 陕北地区巨菌草在七彩山鸡饲料中的应用研究. 中国野生植物资源, 2021, 40(3): 28-32.

[11]

Deng X W, Xu Y, Liu X, et al. Effects of Pennisetum giganteum diet on growth performance, serum, antioxidant capacity and intestinal flora of Phasianus colchicus. Journal of Domestic Animal Ecology, 2022, 43(3): 20-24.

[12]

邓新为, 徐源, 刘夏, 巨菌草饲粮对七彩山鸡生长性能、血清抗氧化能力和肠道菌群的影响. 家畜生态学报, 2022, 43(3): 20-24.

[13]

Qiu B W, Deng X W, Hao L L, et al. Effect of Pennisetum giganteum on growth performance, immune organs and intestinal villi of colorful pheasants. Feed Research, 2020, 43(3): 25-29.

[14]

裘博文, 邓新为, 郝柳柳, 巨菌草对七彩山鸡生长性能、免疫器官以及肠绒毛形态的影响. 饲料研究, 2020, 43(3): 25-29.

[15]

Zhu X F, Xu H Q, Chen W, et al. Cloning, expression and bioinformatics analysis of IGF-1 and IGF-2 genes in Congjiangxiang pigs (Sus scrofa). Journal of Agricultural Biotechnology, 2019, 27(8): 1382-1391.

[16]

朱晓锋, 许厚强, 陈伟, 从江香猪IGF-1IGF-2基因的克隆、表达及生物信息学分析. 农业生物技术学报, 2019, 27(8): 1382-1391.

[17]

Tan X G. Report on Yongsheng breeding experiment of Cong Jiangxiang pigs. The Chinese Livestock and Poultry Breeding, 2018, 14(3): 67-68.

[18]

谭锡国. 从江香猪永胜养殖试验报告. 中国畜禽种业, 2018, 14(3): 67-68.

[19]

Raj S, Skiba G, Sobol M, et al. Body composition and fatty acid profile of musculus longissimus dorsi in growing pigs fed a diet supplemented with grass meal. Journal of Animal and Feed Sciences, 2015, 24(4): 315-322.

[20]

Wang J B. Effects of partial substitution of concentrate with forage on growth performance, carcass characteristic and digestive functions in growing-finishing pigs. Hangzhou: Zhejiang University, 2001.

[21]

王进波. 青绿饲料替代部分精料对生长肥育猪生长性能、胴体特性及消化机能的影响. 杭州: 浙江大学, 2001.

[22]

State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Nutrient requirements of swine: GB/T 39235-2020. Beijing: Standards Press of China, 2020.

[23]

国家市场监督管理总局, 中国国家标准化管理委员会. 猪营养需要量: GB/T 39235-2020. 北京: 中国标准出版社, 2020.

[24]

State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Operating procedures of livestock and poultry slaughtering-Pig: GB/T 17236-2019. Beijing: Standards Press of China, 2019.

[25]

国家市场监督管理总局, 中国国家标准化管理委员会. 畜禽屠宰操作规程 生猪: GB/T 17236-2019. 北京: 中国标准出版社, 2019.

[26]

Ministry of Agriculture of the People’s Republic of China. Technical regulation for testing of carcass traits in lean-type pig: NY/T 825-2004. Beijing: China Agriculture Press, 2004.

[27]

中华人民共和国农业部. 瘦肉型猪胴体性状测定技术规范: NY/T 825-2004. 北京: 中国农业出版社, 2004.

[28]

Wang H S. Effects of low-protein diets supplemented with different nitrogen nutrients on mentabolism and immunity and their underlying mechanism on barrier and microbiota in pigs. Nanjing: Nanjing Agricultural University, 2020.

[29]

王会松. 低蛋白日粮添加不同氮营养素对猪代谢和免疫的影响及其肠道黏膜屏障和微生物的机制. 南京: 南京农业大学, 2020.

[30]

Xu J M. Effects of sodium buryrate on mucosal immune, intestine development and microbiota in pigs. Nanjing: Nanjing Agricultural University, 2017.

[31]

徐菊美. 丁酸钠对猪肠黏膜免疫、肠道发育和菌群区系的影响. 南京: 南京农业大学, 2017.

[32]

Xia Z. Effects of liquid feeding of fermented feed on growth performance and intestinal health in weaned piglets. Chengdu: Sichuan Agricultural University, 2021.

[33]

夏邹. 发酵饲料液态饲喂对断奶仔猪生长性能和肠道健康的影响. 成都: 四川农业大学, 2021.

[34]

Lin Z X, Yang G F, Zhang M, et al. Dietary supplementation of mixed organic acids improves growth performance, immunity, and antioxidant capacity and maintains the intestinal barrier of Ira rabbits. Animals, 2023, 13(19): 3140.

[35]

Xu J Y, Wang Z L, Zhang W B, et al. Effects of Pennisetum giganteum feed on growth performance, slaughter performance and meat quality of black pigs. Henan Journal of Animal Husbandry and Veterinary Medicine, 2023, 44(11): 3-6.

[36]

徐佳玉, 王志力, 张伟彬, 巨菌草饲料对黑猪生长性能、屠宰性能和肉质的影响. 河南畜牧兽医, 2023, 44(11): 3-6.

[37]

Zhu L, Wang X. Effects of substitution of concentrate with ryegrass on the growth performance and substance metabolism of growing-finishing pigs. Veterinary Orientation, 2021(14): 231.

[38]

朱雷, 王鑫. 黑麦草替代精料对生长肥育猪生长性能及物质代谢的影响. 兽医导刊, 2021(14): 231.

[39]

Xiang Y R. Experimental study on the effect of partial substitution of concentrate with Pennisetum sinese Roxb in pig. Zhejiang Journal Animal Science and Veterinary Medicine, 2012, 37(3): 21-22.

[40]

项延润. 皇竹草替代部分精料喂猪的效果试验. 浙江畜牧兽医, 2012, 37(3): 21-22.

[41]

Wallenbecka A, Rundgrenb M, Prestob M. Inclusion of grass/clover silage in diets to growing/finishing pigs-Influence on performance and carcass quality. Acta Agriculturae Scandinavica, Section A-Animal Science, 2015, 3(64): 145-153.

[42]

Zhang S, Li C X, Wang P F, et al. Effects of alfalfa processing dust on growth performance, carcass traits, meat quality and economic efficiency of fattening pigs. Chinese Journal of Animal Nutrition, 2023, 35(5): 2859-2866.

[43]

张森, 李成旭, 王鹏飞, 苜蓿加工粉尘对育肥猪生长性能、胴体性状、肉品质及经济效益的影响. 动物营养学报, 2023, 35(5): 2859-2866.

[44]

Chen D M, Chen Y, Zhang L. Effect of Pennisetum giganteum powder on growth performance and nutrients availability of Sichuan white goose. China Poultry, 2021, 43(9): 59-64.

[45]

陈冬梅, 陈耀, 张龙. 巨菌草粉对四川白鹅生长性能和养分利用率的影响. 中国家禽, 2021, 43(9): 59-64.

[46]

Zhao H Q. Effects of Pennisetum giganteum feed on growth index and fat related genes expression in pheasant. Yan’an: Yan’an University, 2018.

[47]

赵鹤青. 巨菌草饲料对七彩山鸡生长指标及脂肪相关基因表达的研究. 延安: 延安大学, 2018.

[48]

Kambashi B, Boudry C, Picron P, et al. Forage plants as an alternative feed resource for sustainable pig production in the tropics: a review. Animal, 2014, 8(8): 1298-1311.

[49]

Zhao J. Studies on feed grain replaced by alfafa meal in diet of finishing pigs and economic benifit analysis. Lanzhou: Lanzhou University, 2014.

[50]

赵静. 苜蓿草粉替代育肥猪饲料粮生物学及经济学研究. 兰州: 兰州大学, 2014.

[51]

Olukosi O A, van Kuijk S, Han Y. Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poultry Science, 2018, 97(11): 3891-3898.

[52]

Zhang Y M, Liu Y, Li W T, et al. Carcass performance and meat quality analysis of Rizhao large white pigs (Sus scrofa) and the expression of MyHC genes in muscle tissues. Journal of Agricultural Biotechnology, 2018, 26(4): 616-625.

[53]

张艳敏, 刘颖, 李文通, 日照大白猪胴体性能和肉品质的测定及MyHC基因在肌肉组织中的表达分析. 农业生物技术学报, 2018, 26(4): 616-625.

[54]

Galassi G, Malagutti L, Matteo C G. Growth and slaughter performance, nitrogen balance and ammonia emission from slurry in pigs fed high fibre diets. Italian Journal of Animal Science, 2007, 6(3): 227-239.

[55]

Xue L Z, Wang K R, Wang H, et al. Sources and regulation of intestinal oxidative stress in broilers. China Feed, 2021(18): 5-8.

[56]

薛凌壮, 王开荣, 王红, 肉鸡肠道氧化应激的来源与调控. 中国饲料, 2021(18): 5-8.

[57]

Li W X. Effects of dietary crude fiber level on growth performance, digestion and metabolism and intestinal health of Mashen pigs and Duroc×Landrace×Large. Jinzhong: Shanxi Agricultural University, 2021.

[58]

李文新. 日粮粗纤维水平对马身猪和杜长大猪生长性能、消化代谢和肠道发育的影响. 晋中: 山西农业大学, 2021.

[59]

Ngoc T T B, Len N T, Lindberg J E. Impact of fibre intake and fibre source on digestibility, gut development, retention time and growth performance of indigenous and exotic pigs. Animal, 2013, 7(5): 736-745.

[60]

Raj S, Skiba G, Weremko D, et al. Growth of the gastrointestinal tract of pigs during realimentation following a high-fibre diet. Journal of Animal and Feed Sciences, 2005, 14(4): 675-684.

[61]

Chen J L, Yan J C. Application and research of dietary fiber in pig production. Feed and Animal Husbandry, 2008(6): 50-53.

[62]

陈金龙, 闫景彩. 日粮纤维在猪生产中的应用与研究. 饲料与畜牧, 2008(6): 50-53.

[63]

Wu W D, Xie J J, Zhu L Y, et al. Research progress of dietary fiber affects gut health of pigs. Chinese Journal of Animal Nutrition, 2017, 29(3): 739-748.

[64]

吴维达, 解竞静, 朱丽媛, 饲粮纤维影响猪肠道健康的研究进展. 动物营养学报, 2017, 29(3): 739-748.

[65]

Lin G Z, Che D S, Liu B, et al. Research progress on the mechanism of dietary fiber regulating intestinal tract health in pigs. Feed Industry, 2020, 41(8): 26-32.

[66]

林光智, 车东升, 刘博, 日粮纤维调控猪肠道健康机制的研究进展. 饲料工业, 2020, 41(8): 26-32.

[67]

Tiwari U P, Chen H Y, Kim S W, et al. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Animal Feed Science and Technology, 2018, 245(10): 77-90.

[68]

Kwon O, Han T S, Son M Y. Intestinal morphogenesis in development, regeneration, and disease: The potential utility of intestinal organoids for studying compartmentalization of the crypt-villus structure. Frontiers in Cell and Developmental Biology, 2020, 8(2): 593969.

[69]

Dempsey P J. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. Biochimica et Biophysica Acta-Molecular Cell Research, 2017, 1864(11): 2228-2239.

[70]

Wei X B, Zhang L L, Ma G, et al. Effects of yeasts on intestinal villus, crypt and flora in pigs. Feed Industry, 2016, 37(4): 61-64.

[71]

卫旭彪, 张璐璐, 马广, 酵母菌对猪肠道绒毛、隐窝及菌群的影响. 饲料工业, 2016, 37(4): 61-64.

[72]

Yang P, Zhao J B. Variations on gut health and energy metabolism in pigs and humans by intake of different dietary fibers. Food Science & Nutrition, 2021, 9(8): 4639-4654.

[73]

Adams S, Kong X, Che D S, et al. Effects of dietary supplementation of alfafa (Medicago sativa) fibre on the blood biochemistry, nitrogen metabolism, and intestinal morphometry in weaning piglets. Applied Ecology and Environmental Research, 2019, 17(2): 2275-2295.

[74]

Zhao Y, Liu C, Niu J, et al. Impacts of dietary fiber level on growth performance, apparent digestibility, intestinal development, and colonic microbiota and metabolome of pigs. Journal of Animal Science, 2023, 101(1): 1-16.

[75]

Wu X Y, Chen D W, Yu B, et al. Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs. Nutrition, 2018, 51/52: 20-28.

[76]

Ren M M, Yang H, Xiang Y, et al. Effects of dietary fiber levels on growth performance, microbial community structure and short-chain fatty acid content in cecun of Jinhua pigs. Chinese Journal of Animal Nutrition, 2020, 32(6): 2575-2585.

[77]

任敏敏, 杨华, 项云, 饲粮纤维水平对金华猪生长性能、盲肠菌群结构和短链脂肪酸含量的影响. 动物营养学报, 2020, 32(6): 2575-2585.

[78]

Kasprzak A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. International Journal of Molecular Sciences, 2021, 22(12): 6434.

[79]

Janssen J A M J L. New insights from IGF-IR stimulating activity analyses: Pathological considerations. Cells, 2020, 9(4): 862.

[80]

Kieffer D A, Martin R J, Adams S H. Impact of dietary fibers on nutrient management and detoxification organs: Gut, liver, and kidneys. Advances in Nutrition, 2016, 7(6): 1111-1121.

[81]

Rowland K J, Brubaker P L. The “cryptic” mechanism of action of glucagon-like peptide-2. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011, 301(1): G1-G8.

[82]

Diao H, Jiao A R, Yu B, et al. Beet pulp: An alternative to improve the gut health of growing pigs. Animals, 2020, 10(10): 1860.

[83]

Schedle K, Pfaffl M W, Plitzner C, et al. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model. Archives of Animal Nutrition, 2008, 62(6): 427-438.

[84]

He J, Xie H M, Chen D W, et al. Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. European Journal of Nutrition, 2021, 60(2): 715-727.

[85]

Tappenden K A, Albin D M, Bartholome A L, et al. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. The Journal of Nutrition, 2003, 133(11): 3717-3720.

[86]

Guo Y X, Wang B Y, Wang T T, et al. Biological characteristics of IL-6 and related intestinal diseases. International Journal of Biological Sciences, 2021, 17(1): 204-219.

[87]

Lücke J, Heinrich F, Malsy J, et al. Intestinal IL-1β plays a role in protecting against SARS-CoV-2 infection. The Journal of Immunology, 2023, 211(6): 1052-1061.

[88]

Liu T T, Chen Y K, Adil M, et al. In silico identification of natural product-based inhibitors targeting IL-1beta/IL-1R protein-protein interface. Molecules, 2023, 28(13): 4885.

[89]

Ding C H, Cicuttini F, Li J, et al. Targeting IL-6 in the treatment of inflammatory and autoimmune diseases. Expert Opinion on Investigational Drugs, 2009, 18(10): 1457-1466.

[90]

Ye D M, Ma I, Ma T Y. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2006, 290(3): G496-G504.

[91]

Wang L F, Zhu J M, Shan S F, et al. Repression of interferon-γ expression in T cells by prospero related Homeobox protein. Cell Research, 2008, 18(9): 911-920.

[92]

Jorgovanovic D, Song M J, Wang L P, et al. Roles of IFN-γ in tumor progression and regression: a review. Biomarker Research, 2020, 8(1): 49.

[93]

Minshawi F, Lanvermann S, McKenzie E, et al. The generation of an engineered interleukin-10 protein with improved stability and biological function. Frontiers in Immunology, 2020, 11(2): 1794.

[94]

Zhang Q, Yu N W, Lee C. Vicious cycle of TGF-β signaling in tumor progression and metastasis. American Journal of Clinical and Experimental Urology, 2014, 2(2): 149-155.

[95]

Chen H, Chen D W, Qin W, et al. Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model. International Journal of Food Sciences and Nutrition, 2017, 68(2): 65-72.

[96]

Ding S J, Cheng Y T, Azad M, et al. Dietary fiber alters immunity and intestinal barrier function of different breeds of growing pigs. Frontiers in Immunology, 2023, 14(2): 1104837.

[97]

Weber T E, Ziemer C J, Kerr B J. Effects of adding fibrous feedstuffs to the diet of young pigs on growth performance, intestinal cytokines, and circulating acute-phase proteins. Journal of Animal Science, 2008, 86(4): 871-881.

[98]

Liu L X, Li Q Q, Yang Y J, et al. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 2021, 8(2): 736739.

[99]

Tian Y, Yang L Y, Huang X G, et al. Reseach progress of fecal microbiota transplantation in improving intestinal barrier function in pigs. Chinese Journal of Animal Nutrition, 2023, 35(4): 2072-2080.

[100]

田玉, 杨玲媛, 黄兴国, 粪菌移植改善猪肠道屏障功能的研究进展. 动物营养学报, 2023, 35(4): 2072-2080.

[101]

Wang J, Ji H F. Tight junction proteins in the weaned piglet intestine: Roles and regulation. Current Protein & Peptide Science, 2019, 20(7): 652-660.

[102]

Heinemann U, Schuetz A. Structural features of tight-junction proteins. International Journal of Molecular Sciences, 2019, 20(23): 6020.

[103]

Kuo W T, Odenwald M A, Turner J R, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Annals of the New York Academy of Sciences, 2022, 1514(1): 21-33.

[104]

Garcia H V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Annals of the New York Academy of Sciences, 2017, 1397(1): 66-79.

[105]

Zhou B W, Moodie A, Blanchard A A, et al. Claudin 1 in breast cancer: New insights. Journal of Clinical Medicine, 2015, 4(12): 1960-1976.

[106]

Kaminsky L W, Al-Sadi R, Ma T Y. IL-1β and the intestinal epithelial tight junction barrier. Frontiers in Immunology, 2021, 12(2): 767456.

[107]

Torices S, Daire L, Simon S, et al. Occludin: a gatekeeper of brain infection by HIV-1. Fluids and Barriers of the CNS, 2023, 20(1): 73.

[108]

Liu J H, Luo Y H, Kong X F, et al. Influences of wheat bran fiber on growth performance, nutrient digestibility, and intestinal epithelium functions in Xiangcun pigs. Heliyon, 2023, 9(7): e17699.

[109]

Chen H, Mao X B, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, 2013, 110(10): 1837-1848.

[110]

Liu J H, Luo Y H, Kong X F, et al. Effects of dietary fiber on growth performance, nutrient digestibility and intestinal health in different pig breeds. Animals, 2022, 12(23): 3298.

[111]

Hu R Q, Li S W, Diao H, et al. The interaction between dietary fiber and gut microbiota, and its effect on pig intestinal health. Frontiers in Immunology, 2023, 14(2): 1095740.

[112]

Keto L, Tsitko I, Perttilä S, et al. Effect of silage juice feeding on pig production performance, meat quality and gut microbiome. Livestock Science, 2021, 254(12): 104728.

[113]

Yu M, Gao T, Liu Z, et al. Effects of dietary supplementation with high fiber (stevia residue) on the fecal flora of pregnant sows. Animals, 2020, 10(12): 2247.

[114]

Gao C M, Wen Y, Yi X F, et al. The effect of different fiber source diets on the gut microbiota of fattening pigs. Feed Research, 2022, 45(8): 27-31.

[115]

高崇敏, 文裕, 易显凤, 不同纤维源饲粮对育肥猪肠道微生物菌群的影响. 饲料研究, 2022, 45(8): 27-31.

[116]

Li Z Q, Zhao Y J, Wang H, et al. High-fibre diets regulate antioxidative capacity and promote intestinal health by regulating bacterial microbiota in growing pigs. Journal of Animal Physiology and Animal Nutrition, 2023, 108(2): 357-365.

[117]

Zheng X R, Zhuo M X, Ji J L, et al. Characteristics of serum immune indices and intestinal microbiota of Wannan black pigs at different growth stages. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3770-3783.

[118]

郑先瑞, 卓明雪, 纪金丽, 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析. 畜牧兽医学报, 2023, 54(9): 3770-3783.

[119]

Xue X X, Wang L, Shen W J, et al. Effect of different dietary energy-protein ratios on growth performance,body size and fecal microflora of duality of ‘Berkshire pigs×Bamei pigs’. Feed Research, 2022, 45(4): 25-31.

[120]

薛星星, 王磊, 沈文娟, 日粮不同能蛋比对“巴×八”二元猪生长性能、体尺和粪便微生物区系的影响. 饲料研究, 2022, 45(4): 25-31.

[121]

Li Z Q, Zhang F, Zhao Y R, et al. Effects of different starch diets on growth performance, intestinal health and faecal microbiota of growing pigs. Journal of Animal Physiology and Animal Nutrition, 2023, 107(4): 1043-1053.

[122]

Zhao J B, Liu P, Wu Y, et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. Journal of Agricultural and Food Chemistry, 2018, 66(30): 7995-8004.

[123]

Li S T, Zhang C, Gu Y Y, et al. Lean rats gained more body weight than obese ones from a high-fibre diet. British Journal of Nutrition, 2015, 114(8): 1188-1194.

[124]

Li H, Ma L T, Li Z Q, et al. Evolution of the gut microbiota and its fermentation characteristics of Ningxiang pigs at the young stage. Animals, 2021, 11(3): 638.

[125]

Su Y, Yao W, Perez-Gutierrez O N, et al. Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiology Ecology, 2008, 66(3): 546-555.

[126]

Gao Q T, Sun G M, Duan J J, et al. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Frontiers in Microbiology, 2022, 13(1): 969524.

[127]

El K A, Armougom F, Gordon J I, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, 11(7): 497-504.

[128]

Pu G, Li P H, Du T R, et al. Adding appropriate fiber in diet increases diversity and metabolic capacity of distal gut microbiota without altering fiber digestibility and growth rate of finishing pig. Frontiers in Microbiology, 2020, 11(1): 533.

[129]

Petry A L, Patience J F, Huntley N F, et al. Xylanase supplementation modulates the microbiota of the large intestine of pigs fed corn-based fiber by means of a stimbiotic mechanism of action. Frontiers in Microbiology, 2021, 12(2): 619970.

基金资助

国家重点研发计划项目(2023YFD1600500)

福建省科技厅农业引导性(重点)项目(2023N0008)

福建省自然科学基金项目(2022J01587)

中央引导地方科技发展资金定向项目(2022L3085)

菌草及菌草食药用菌种质创新(KKy22001XA)

AI Summary AI Mindmap
PDF (1942KB)

413

访问

0

被引

详细

导航
相关文章

AI思维导图

/