巨菌草对育肥从江香猪生长性能及肠道健康的影响
张敏 , 杨锐 , 黄逸州 , 林芷昕 , 郑贤跃 , 刘庆华 , 高玉云 , 林冬梅 , 林占熺 , 金灵
草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 171 -188.
巨菌草对育肥从江香猪生长性能及肠道健康的影响
Effects of Pennisetum giganteum on the growth performance and intestinal health of finishing Congjiang Xiang pigs
本试验旨在探究巨菌草替代不同水平基础饲粮对育肥从江香猪生长性能及肠道健康的影响。选取6月龄体重相近的健康从江香猪30头,随机分为3组(每组5个重复,每个重复2头)。对照组饲喂100%基础饲粮,试验Ⅰ、Ⅱ组分别用新鲜青绿巨菌草替代10%、20%基础饲粮,试验期90 d。通过测定育肥从江香猪生长性能、肠道发育、肠道机械屏障和盲肠菌群结构,并进行经济效益分析,为巨菌草在猪的生产应用中提供理论依据。本试验主要结果如下:1)生长性能:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪生长性能及胴体性状各指标无显著差异(P>0.05)。巨菌草不计成本时,与对照组相比,试验Ⅰ组的增重成本降低8.73%,试验Ⅱ组降低11.59%;巨菌草按市场价格0.35元·kg-1计算时,试验Ⅰ组的增重成本降低2.78%,试验Ⅱ组增加1.35%。2)肠道发育:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪胃的相对重量显著提高(P<0.05),小肠相对重量有升高的趋势(P=0.092)。与对照组相比,试验Ⅰ组育肥从江香猪回肠隐窝深度显著降低(P<0.05),回肠绒毛高度/隐窝深度(V/C)、空肠GLP-2和回肠IGF-1R基因表达量显著提高(P<0.05);试验Ⅱ组育肥从江香猪回肠绒毛高度、V/C及空肠GLP-2基因表达量显著提高(P<0.05)。3)肠道免疫及机械屏障:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪回肠IFN-γ含量显著降低,试验Ⅱ组空肠TGF-β含量显著提高(P<0.05);试验Ⅰ、Ⅱ组回肠ZO-1基因表达量显著提高,试验Ⅱ组空肠Occludin基因表达量显著提高(P<0.05)。4)盲肠微生物区系:与对照组相比,试验Ⅰ、Ⅱ组育肥从江香猪Shannon指数显著提高,链球菌属相对丰度显著下降(P<0.05)。试验Ⅰ组和试验Ⅱ组毛螺菌科未分类菌属有上升趋势(P=0.065),螺旋体门(P=0.085)、密螺旋体属(P=0.085)有下降趋势。综上所述,巨菌草替代部分基础饲粮对育肥从江香猪生长性能、胴体性状无显著影响,但可提高经济效益并促进胃肠道的发育,提升肠道屏障功能,有利于肠道健康。巨菌草不计成本时,替代20%基础饲粮为宜,巨菌草按市场价格0.35元·kg-1计算时,替代10%基础饲粮为宜。
The aim of this study was to determine the effects of dietary supplementation with Pennisetum giganteum on the growth performance and intestinal health of finishing Congjiang Xiang pigs. Thirty 6-month-old healthy Congjiang Xiang pigs of similar weight were selected and randomly divided into three groups (five replicates per group, two pigs per replicate). The control group was fed with a basal diet, and experimental groups Ⅰ and Ⅱ were fed with the basal diet with 10% and 20% (w/w) replaced with fresh P. giganteum. The experimental period was 90 days. The growth performance, intestinal development, and the structures of the intestinal mechanical barrier and cecal flora were analyzed, and the economic benefits were estimated. The main results were as follows: 1) Growth performance: Compared with the control group, groups Ⅰ and Ⅱ showed no significant differences in growth performance or carcass traits (P>0.05). When the cost of P. giganteum was not considered, groups Ⅰ and Ⅱ had lower weight gain costs (reduced by 8.73% and 11.59%, respectively) than that of the control group. When the cost of P. giganteum was calculated according to the market price of 0.35 CNY·kg-1, group Ⅰ still had a lower weight gain cost (2.78% lower) than that of the control, but the weight gain cost of experiment group Ⅱ was increased by 1.35%. 2) Intestinal development: Compared with the control group, groups Ⅰ and Ⅱ had significantly higher relative weight of the stomach (P<0.05), and a trend of higher relative weight of the small intestine (P=0.092). Compared with the control group, group Ⅰ showed significantly decreased ileal crypt depth (P<0.05), and significantly increased ileal height/crypt depth (V/C) and transcript levels of GLP-2 in the jejunum and IGF-1R in the ileum (P<0.05). Compared with the control group, group Ⅱ showed significantly increased ileal villus height, V/C, and gene transcript level of jejunal GLP-2 (P<0.05). 3) Intestinal immunity and mechanical barriers: Compared with the control group, groups Ⅰ and Ⅱ showed significantly decreased ileal IFN-γ content, and group Ⅱ showed significantly increased jejunal TGF-β content (P<0.05). Comparing gene transcript levels with those in the control, groups Ⅰ and Ⅱ showed significantly increased transcript levels of ZO-1 in the ileum (P<0.05), and group Ⅱ showed significantly increased transcript levels of Occludin in the jejunum (P<0.05). 4) Cecal microbes: Shannon index was significantly higher in both experimental groups than in the control (P<0.05). The relative abundance of Streptococcus was significantly lower in both experimental groups than in the control (P<0.05). The experimental groups showed trends of increased abundance of unclassified_f__Lachnospiraceae (P=0.065) and decreased abundance of Spirochaetota (P=0.085) and Treponema (P=0.085). In conclusion, replacing part of the basal diet with P. giganteum had no significant effect on the growth performance or carcass traits of finishing Congjiang Xiang pigs, but it improved the economic efficiency, promoted gastrointestinal tract development, and enhanced intestinal barrier function, which were conducive to intestinal health. These results show that 20% of the basal diet can be replaced with P. giganteum if its cost is not considered, and 10% of the basal diet can be replaced with P. giganteum if it is costed at the market price of 0.35 CNY·kg-1. These findings provide scientific data for assessing the application of P. giganteum in pig production.
巨菌草 / 育肥从江香猪 / 生长性能 / 盲肠菌群 / 肠道健康
Pennisetum giganteum / finishing Congjiang Xiang pigs / growth performance / cecal microflora / intestinal health
| [1] |
Liao X D, Zhang L Y, Lv L, et al. Survey on distribution of mineral contents in feedstuffs for livestock and poultry in China. Scientia Agricultura Sinica, 2019, 52(11): 1970-1972. |
| [2] |
廖秀冬, 张丽阳, 吕林, 我国畜禽饲料资源中矿物元素含量分布的调查. 中国农业科学, 2019, 52(11): 1970-1972. |
| [3] |
Anon. The Ministry of Agriculture and Rural Affairs has issued a work plan to promote the reduction and substitution of corn and soybean meal in feed. BeiFang MuYe, 2021(7): 5. |
| [4] |
佚名. 农业农村部发布工作方案推进饲料中玉米、豆粕减量替代. 北方牧业, 2021(7): 5. |
| [5] |
Li Y S, Zhou Y, Zhao X D, et al. Application of Pennisetum giganteum in livestock breeding. Feed Research, 2020, 43(7): 146-148. |
| [6] |
李玉帅, 周岩, 赵晓登, 巨菌草在畜禽养殖中的应用. 饲料研究, 2020, 43(7): 146-148. |
| [7] |
Huang X F, Meng Q X, Yang J X, et al. Effects of replacing the corn silage with Puelia sinese Roxb silage on production performance, composition of milk and economic benefits in dairy cows. China Animal Husbandry & Veterinary Medicine, 2017, 44(7): 1997-2002. |
| [8] |
黄晓飞, 孟庆翔, 杨甲轩, 巨菌草青贮替代全株玉米青贮对奶牛生产性能、乳成分和经济效益的影响. 中国畜牧兽医, 2017, 44(7): 1997-2002. |
| [9] |
Deng X W, Luo N, Sun Z H, et al. Application of Pennisetum giganteum in Phasianus colchicu fodder in northern Shaanxi. Chinese Wild Plant Resources, 2021, 40(3): 28-32. |
| [10] |
邓新为, 罗娜, 孙志宏, 陕北地区巨菌草在七彩山鸡饲料中的应用研究. 中国野生植物资源, 2021, 40(3): 28-32. |
| [11] |
Deng X W, Xu Y, Liu X, et al. Effects of Pennisetum giganteum diet on growth performance, serum, antioxidant capacity and intestinal flora of Phasianus colchicus. Journal of Domestic Animal Ecology, 2022, 43(3): 20-24. |
| [12] |
邓新为, 徐源, 刘夏, 巨菌草饲粮对七彩山鸡生长性能、血清抗氧化能力和肠道菌群的影响. 家畜生态学报, 2022, 43(3): 20-24. |
| [13] |
Qiu B W, Deng X W, Hao L L, et al. Effect of Pennisetum giganteum on growth performance, immune organs and intestinal villi of colorful pheasants. Feed Research, 2020, 43(3): 25-29. |
| [14] |
裘博文, 邓新为, 郝柳柳, 巨菌草对七彩山鸡生长性能、免疫器官以及肠绒毛形态的影响. 饲料研究, 2020, 43(3): 25-29. |
| [15] |
Zhu X F, Xu H Q, Chen W, et al. Cloning, expression and bioinformatics analysis of IGF-1 and IGF-2 genes in Congjiangxiang pigs (Sus scrofa). Journal of Agricultural Biotechnology, 2019, 27(8): 1382-1391. |
| [16] |
朱晓锋, 许厚强, 陈伟, 从江香猪IGF-1和IGF-2基因的克隆、表达及生物信息学分析. 农业生物技术学报, 2019, 27(8): 1382-1391. |
| [17] |
Tan X G. Report on Yongsheng breeding experiment of Cong Jiangxiang pigs. The Chinese Livestock and Poultry Breeding, 2018, 14(3): 67-68. |
| [18] |
谭锡国. 从江香猪永胜养殖试验报告. 中国畜禽种业, 2018, 14(3): 67-68. |
| [19] |
Raj S, Skiba G, Sobol M, et al. Body composition and fatty acid profile of musculus longissimus dorsi in growing pigs fed a diet supplemented with grass meal. Journal of Animal and Feed Sciences, 2015, 24(4): 315-322. |
| [20] |
Wang J B. Effects of partial substitution of concentrate with forage on growth performance, carcass characteristic and digestive functions in growing-finishing pigs. Hangzhou: Zhejiang University, 2001. |
| [21] |
王进波. 青绿饲料替代部分精料对生长肥育猪生长性能、胴体特性及消化机能的影响. 杭州: 浙江大学, 2001. |
| [22] |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Nutrient requirements of swine: GB/T 39235-2020. Beijing: Standards Press of China, 2020. |
| [23] |
国家市场监督管理总局, 中国国家标准化管理委员会. 猪营养需要量: GB/T 39235-2020. 北京: 中国标准出版社, 2020. |
| [24] |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Operating procedures of livestock and poultry slaughtering-Pig: GB/T 17236-2019. Beijing: Standards Press of China, 2019. |
| [25] |
国家市场监督管理总局, 中国国家标准化管理委员会. 畜禽屠宰操作规程 生猪: GB/T 17236-2019. 北京: 中国标准出版社, 2019. |
| [26] |
Ministry of Agriculture of the People’s Republic of China. Technical regulation for testing of carcass traits in lean-type pig: NY/T 825-2004. Beijing: China Agriculture Press, 2004. |
| [27] |
中华人民共和国农业部. 瘦肉型猪胴体性状测定技术规范: NY/T 825-2004. 北京: 中国农业出版社, 2004. |
| [28] |
Wang H S. Effects of low-protein diets supplemented with different nitrogen nutrients on mentabolism and immunity and their underlying mechanism on barrier and microbiota in pigs. Nanjing: Nanjing Agricultural University, 2020. |
| [29] |
王会松. 低蛋白日粮添加不同氮营养素对猪代谢和免疫的影响及其肠道黏膜屏障和微生物的机制. 南京: 南京农业大学, 2020. |
| [30] |
Xu J M. Effects of sodium buryrate on mucosal immune, intestine development and microbiota in pigs. Nanjing: Nanjing Agricultural University, 2017. |
| [31] |
徐菊美. 丁酸钠对猪肠黏膜免疫、肠道发育和菌群区系的影响. 南京: 南京农业大学, 2017. |
| [32] |
Xia Z. Effects of liquid feeding of fermented feed on growth performance and intestinal health in weaned piglets. Chengdu: Sichuan Agricultural University, 2021. |
| [33] |
夏邹. 发酵饲料液态饲喂对断奶仔猪生长性能和肠道健康的影响. 成都: 四川农业大学, 2021. |
| [34] |
Lin Z X, Yang G F, Zhang M, et al. Dietary supplementation of mixed organic acids improves growth performance, immunity, and antioxidant capacity and maintains the intestinal barrier of Ira rabbits. Animals, 2023, 13(19): 3140. |
| [35] |
Xu J Y, Wang Z L, Zhang W B, et al. Effects of Pennisetum giganteum feed on growth performance, slaughter performance and meat quality of black pigs. Henan Journal of Animal Husbandry and Veterinary Medicine, 2023, 44(11): 3-6. |
| [36] |
徐佳玉, 王志力, 张伟彬, 巨菌草饲料对黑猪生长性能、屠宰性能和肉质的影响. 河南畜牧兽医, 2023, 44(11): 3-6. |
| [37] |
Zhu L, Wang X. Effects of substitution of concentrate with ryegrass on the growth performance and substance metabolism of growing-finishing pigs. Veterinary Orientation, 2021(14): 231. |
| [38] |
朱雷, 王鑫. 黑麦草替代精料对生长肥育猪生长性能及物质代谢的影响. 兽医导刊, 2021(14): 231. |
| [39] |
Xiang Y R. Experimental study on the effect of partial substitution of concentrate with Pennisetum sinese Roxb in pig. Zhejiang Journal Animal Science and Veterinary Medicine, 2012, 37(3): 21-22. |
| [40] |
项延润. 皇竹草替代部分精料喂猪的效果试验. 浙江畜牧兽医, 2012, 37(3): 21-22. |
| [41] |
Wallenbecka A, Rundgrenb M, Prestob M. Inclusion of grass/clover silage in diets to growing/finishing pigs-Influence on performance and carcass quality. Acta Agriculturae Scandinavica, Section A-Animal Science, 2015, 3(64): 145-153. |
| [42] |
Zhang S, Li C X, Wang P F, et al. Effects of alfalfa processing dust on growth performance, carcass traits, meat quality and economic efficiency of fattening pigs. Chinese Journal of Animal Nutrition, 2023, 35(5): 2859-2866. |
| [43] |
张森, 李成旭, 王鹏飞, 苜蓿加工粉尘对育肥猪生长性能、胴体性状、肉品质及经济效益的影响. 动物营养学报, 2023, 35(5): 2859-2866. |
| [44] |
Chen D M, Chen Y, Zhang L. Effect of Pennisetum giganteum powder on growth performance and nutrients availability of Sichuan white goose. China Poultry, 2021, 43(9): 59-64. |
| [45] |
陈冬梅, 陈耀, 张龙. 巨菌草粉对四川白鹅生长性能和养分利用率的影响. 中国家禽, 2021, 43(9): 59-64. |
| [46] |
Zhao H Q. Effects of Pennisetum giganteum feed on growth index and fat related genes expression in pheasant. Yan’an: Yan’an University, 2018. |
| [47] |
赵鹤青. 巨菌草饲料对七彩山鸡生长指标及脂肪相关基因表达的研究. 延安: 延安大学, 2018. |
| [48] |
Kambashi B, Boudry C, Picron P, et al. Forage plants as an alternative feed resource for sustainable pig production in the tropics: a review. Animal, 2014, 8(8): 1298-1311. |
| [49] |
Zhao J. Studies on feed grain replaced by alfafa meal in diet of finishing pigs and economic benifit analysis. Lanzhou: Lanzhou University, 2014. |
| [50] |
赵静. 苜蓿草粉替代育肥猪饲料粮生物学及经济学研究. 兰州: 兰州大学, 2014. |
| [51] |
Olukosi O A, van Kuijk S, Han Y. Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poultry Science, 2018, 97(11): 3891-3898. |
| [52] |
Zhang Y M, Liu Y, Li W T, et al. Carcass performance and meat quality analysis of Rizhao large white pigs (Sus scrofa) and the expression of MyHC genes in muscle tissues. Journal of Agricultural Biotechnology, 2018, 26(4): 616-625. |
| [53] |
张艳敏, 刘颖, 李文通, 日照大白猪胴体性能和肉品质的测定及MyHC基因在肌肉组织中的表达分析. 农业生物技术学报, 2018, 26(4): 616-625. |
| [54] |
Galassi G, Malagutti L, Matteo C G. Growth and slaughter performance, nitrogen balance and ammonia emission from slurry in pigs fed high fibre diets. Italian Journal of Animal Science, 2007, 6(3): 227-239. |
| [55] |
Xue L Z, Wang K R, Wang H, et al. Sources and regulation of intestinal oxidative stress in broilers. China Feed, 2021(18): 5-8. |
| [56] |
薛凌壮, 王开荣, 王红, 肉鸡肠道氧化应激的来源与调控. 中国饲料, 2021(18): 5-8. |
| [57] |
Li W X. Effects of dietary crude fiber level on growth performance, digestion and metabolism and intestinal health of Mashen pigs and Duroc×Landrace×Large. Jinzhong: Shanxi Agricultural University, 2021. |
| [58] |
李文新. 日粮粗纤维水平对马身猪和杜长大猪生长性能、消化代谢和肠道发育的影响. 晋中: 山西农业大学, 2021. |
| [59] |
Ngoc T T B, Len N T, Lindberg J E. Impact of fibre intake and fibre source on digestibility, gut development, retention time and growth performance of indigenous and exotic pigs. Animal, 2013, 7(5): 736-745. |
| [60] |
Raj S, Skiba G, Weremko D, et al. Growth of the gastrointestinal tract of pigs during realimentation following a high-fibre diet. Journal of Animal and Feed Sciences, 2005, 14(4): 675-684. |
| [61] |
Chen J L, Yan J C. Application and research of dietary fiber in pig production. Feed and Animal Husbandry, 2008(6): 50-53. |
| [62] |
陈金龙, 闫景彩. 日粮纤维在猪生产中的应用与研究. 饲料与畜牧, 2008(6): 50-53. |
| [63] |
Wu W D, Xie J J, Zhu L Y, et al. Research progress of dietary fiber affects gut health of pigs. Chinese Journal of Animal Nutrition, 2017, 29(3): 739-748. |
| [64] |
吴维达, 解竞静, 朱丽媛, 饲粮纤维影响猪肠道健康的研究进展. 动物营养学报, 2017, 29(3): 739-748. |
| [65] |
Lin G Z, Che D S, Liu B, et al. Research progress on the mechanism of dietary fiber regulating intestinal tract health in pigs. Feed Industry, 2020, 41(8): 26-32. |
| [66] |
林光智, 车东升, 刘博, 日粮纤维调控猪肠道健康机制的研究进展. 饲料工业, 2020, 41(8): 26-32. |
| [67] |
Tiwari U P, Chen H Y, Kim S W, et al. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Animal Feed Science and Technology, 2018, 245(10): 77-90. |
| [68] |
Kwon O, Han T S, Son M Y. Intestinal morphogenesis in development, regeneration, and disease: The potential utility of intestinal organoids for studying compartmentalization of the crypt-villus structure. Frontiers in Cell and Developmental Biology, 2020, 8(2): 593969. |
| [69] |
Dempsey P J. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. Biochimica et Biophysica Acta-Molecular Cell Research, 2017, 1864(11): 2228-2239. |
| [70] |
Wei X B, Zhang L L, Ma G, et al. Effects of yeasts on intestinal villus, crypt and flora in pigs. Feed Industry, 2016, 37(4): 61-64. |
| [71] |
卫旭彪, 张璐璐, 马广, 酵母菌对猪肠道绒毛、隐窝及菌群的影响. 饲料工业, 2016, 37(4): 61-64. |
| [72] |
Yang P, Zhao J B. Variations on gut health and energy metabolism in pigs and humans by intake of different dietary fibers. Food Science & Nutrition, 2021, 9(8): 4639-4654. |
| [73] |
Adams S, Kong X, Che D S, et al. Effects of dietary supplementation of alfafa (Medicago sativa) fibre on the blood biochemistry, nitrogen metabolism, and intestinal morphometry in weaning piglets. Applied Ecology and Environmental Research, 2019, 17(2): 2275-2295. |
| [74] |
Zhao Y, Liu C, Niu J, et al. Impacts of dietary fiber level on growth performance, apparent digestibility, intestinal development, and colonic microbiota and metabolome of pigs. Journal of Animal Science, 2023, 101(1): 1-16. |
| [75] |
Wu X Y, Chen D W, Yu B, et al. Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs. Nutrition, 2018, 51/52: 20-28. |
| [76] |
Ren M M, Yang H, Xiang Y, et al. Effects of dietary fiber levels on growth performance, microbial community structure and short-chain fatty acid content in cecun of Jinhua pigs. Chinese Journal of Animal Nutrition, 2020, 32(6): 2575-2585. |
| [77] |
任敏敏, 杨华, 项云, 饲粮纤维水平对金华猪生长性能、盲肠菌群结构和短链脂肪酸含量的影响. 动物营养学报, 2020, 32(6): 2575-2585. |
| [78] |
Kasprzak A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. International Journal of Molecular Sciences, 2021, 22(12): 6434. |
| [79] |
Janssen J A M J L. New insights from IGF-IR stimulating activity analyses: Pathological considerations. Cells, 2020, 9(4): 862. |
| [80] |
Kieffer D A, Martin R J, Adams S H. Impact of dietary fibers on nutrient management and detoxification organs: Gut, liver, and kidneys. Advances in Nutrition, 2016, 7(6): 1111-1121. |
| [81] |
Rowland K J, Brubaker P L. The “cryptic” mechanism of action of glucagon-like peptide-2. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011, 301(1): G1-G8. |
| [82] |
Diao H, Jiao A R, Yu B, et al. Beet pulp: An alternative to improve the gut health of growing pigs. Animals, 2020, 10(10): 1860. |
| [83] |
Schedle K, Pfaffl M W, Plitzner C, et al. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model. Archives of Animal Nutrition, 2008, 62(6): 427-438. |
| [84] |
He J, Xie H M, Chen D W, et al. Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. European Journal of Nutrition, 2021, 60(2): 715-727. |
| [85] |
Tappenden K A, Albin D M, Bartholome A L, et al. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. The Journal of Nutrition, 2003, 133(11): 3717-3720. |
| [86] |
Guo Y X, Wang B Y, Wang T T, et al. Biological characteristics of IL-6 and related intestinal diseases. International Journal of Biological Sciences, 2021, 17(1): 204-219. |
| [87] |
Lücke J, Heinrich F, Malsy J, et al. Intestinal IL-1β plays a role in protecting against SARS-CoV-2 infection. The Journal of Immunology, 2023, 211(6): 1052-1061. |
| [88] |
Liu T T, Chen Y K, Adil M, et al. In silico identification of natural product-based inhibitors targeting IL-1beta/IL-1R protein-protein interface. Molecules, 2023, 28(13): 4885. |
| [89] |
Ding C H, Cicuttini F, Li J, et al. Targeting IL-6 in the treatment of inflammatory and autoimmune diseases. Expert Opinion on Investigational Drugs, 2009, 18(10): 1457-1466. |
| [90] |
Ye D M, Ma I, Ma T Y. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2006, 290(3): G496-G504. |
| [91] |
Wang L F, Zhu J M, Shan S F, et al. Repression of interferon-γ expression in T cells by prospero related Homeobox protein. Cell Research, 2008, 18(9): 911-920. |
| [92] |
Jorgovanovic D, Song M J, Wang L P, et al. Roles of IFN-γ in tumor progression and regression: a review. Biomarker Research, 2020, 8(1): 49. |
| [93] |
Minshawi F, Lanvermann S, McKenzie E, et al. The generation of an engineered interleukin-10 protein with improved stability and biological function. Frontiers in Immunology, 2020, 11(2): 1794. |
| [94] |
Zhang Q, Yu N W, Lee C. Vicious cycle of TGF-β signaling in tumor progression and metastasis. American Journal of Clinical and Experimental Urology, 2014, 2(2): 149-155. |
| [95] |
Chen H, Chen D W, Qin W, et al. Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model. International Journal of Food Sciences and Nutrition, 2017, 68(2): 65-72. |
| [96] |
Ding S J, Cheng Y T, Azad M, et al. Dietary fiber alters immunity and intestinal barrier function of different breeds of growing pigs. Frontiers in Immunology, 2023, 14(2): 1104837. |
| [97] |
Weber T E, Ziemer C J, Kerr B J. Effects of adding fibrous feedstuffs to the diet of young pigs on growth performance, intestinal cytokines, and circulating acute-phase proteins. Journal of Animal Science, 2008, 86(4): 871-881. |
| [98] |
Liu L X, Li Q Q, Yang Y J, et al. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 2021, 8(2): 736739. |
| [99] |
Tian Y, Yang L Y, Huang X G, et al. Reseach progress of fecal microbiota transplantation in improving intestinal barrier function in pigs. Chinese Journal of Animal Nutrition, 2023, 35(4): 2072-2080. |
| [100] |
田玉, 杨玲媛, 黄兴国, 粪菌移植改善猪肠道屏障功能的研究进展. 动物营养学报, 2023, 35(4): 2072-2080. |
| [101] |
Wang J, Ji H F. Tight junction proteins in the weaned piglet intestine: Roles and regulation. Current Protein & Peptide Science, 2019, 20(7): 652-660. |
| [102] |
Heinemann U, Schuetz A. Structural features of tight-junction proteins. International Journal of Molecular Sciences, 2019, 20(23): 6020. |
| [103] |
Kuo W T, Odenwald M A, Turner J R, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Annals of the New York Academy of Sciences, 2022, 1514(1): 21-33. |
| [104] |
Garcia H V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Annals of the New York Academy of Sciences, 2017, 1397(1): 66-79. |
| [105] |
Zhou B W, Moodie A, Blanchard A A, et al. Claudin 1 in breast cancer: New insights. Journal of Clinical Medicine, 2015, 4(12): 1960-1976. |
| [106] |
Kaminsky L W, Al-Sadi R, Ma T Y. IL-1β and the intestinal epithelial tight junction barrier. Frontiers in Immunology, 2021, 12(2): 767456. |
| [107] |
Torices S, Daire L, Simon S, et al. Occludin: a gatekeeper of brain infection by HIV-1. Fluids and Barriers of the CNS, 2023, 20(1): 73. |
| [108] |
Liu J H, Luo Y H, Kong X F, et al. Influences of wheat bran fiber on growth performance, nutrient digestibility, and intestinal epithelium functions in Xiangcun pigs. Heliyon, 2023, 9(7): e17699. |
| [109] |
Chen H, Mao X B, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, 2013, 110(10): 1837-1848. |
| [110] |
Liu J H, Luo Y H, Kong X F, et al. Effects of dietary fiber on growth performance, nutrient digestibility and intestinal health in different pig breeds. Animals, 2022, 12(23): 3298. |
| [111] |
Hu R Q, Li S W, Diao H, et al. The interaction between dietary fiber and gut microbiota, and its effect on pig intestinal health. Frontiers in Immunology, 2023, 14(2): 1095740. |
| [112] |
Keto L, Tsitko I, Perttilä S, et al. Effect of silage juice feeding on pig production performance, meat quality and gut microbiome. Livestock Science, 2021, 254(12): 104728. |
| [113] |
Yu M, Gao T, Liu Z, et al. Effects of dietary supplementation with high fiber (stevia residue) on the fecal flora of pregnant sows. Animals, 2020, 10(12): 2247. |
| [114] |
Gao C M, Wen Y, Yi X F, et al. The effect of different fiber source diets on the gut microbiota of fattening pigs. Feed Research, 2022, 45(8): 27-31. |
| [115] |
高崇敏, 文裕, 易显凤, 不同纤维源饲粮对育肥猪肠道微生物菌群的影响. 饲料研究, 2022, 45(8): 27-31. |
| [116] |
Li Z Q, Zhao Y J, Wang H, et al. High-fibre diets regulate antioxidative capacity and promote intestinal health by regulating bacterial microbiota in growing pigs. Journal of Animal Physiology and Animal Nutrition, 2023, 108(2): 357-365. |
| [117] |
Zheng X R, Zhuo M X, Ji J L, et al. Characteristics of serum immune indices and intestinal microbiota of Wannan black pigs at different growth stages. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3770-3783. |
| [118] |
郑先瑞, 卓明雪, 纪金丽, 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
| [119] |
Xue X X, Wang L, Shen W J, et al. Effect of different dietary energy-protein ratios on growth performance,body size and fecal microflora of duality of ‘Berkshire pigs×Bamei pigs’. Feed Research, 2022, 45(4): 25-31. |
| [120] |
薛星星, 王磊, 沈文娟, 日粮不同能蛋比对“巴×八”二元猪生长性能、体尺和粪便微生物区系的影响. 饲料研究, 2022, 45(4): 25-31. |
| [121] |
Li Z Q, Zhang F, Zhao Y R, et al. Effects of different starch diets on growth performance, intestinal health and faecal microbiota of growing pigs. Journal of Animal Physiology and Animal Nutrition, 2023, 107(4): 1043-1053. |
| [122] |
Zhao J B, Liu P, Wu Y, et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. Journal of Agricultural and Food Chemistry, 2018, 66(30): 7995-8004. |
| [123] |
Li S T, Zhang C, Gu Y Y, et al. Lean rats gained more body weight than obese ones from a high-fibre diet. British Journal of Nutrition, 2015, 114(8): 1188-1194. |
| [124] |
Li H, Ma L T, Li Z Q, et al. Evolution of the gut microbiota and its fermentation characteristics of Ningxiang pigs at the young stage. Animals, 2021, 11(3): 638. |
| [125] |
Su Y, Yao W, Perez-Gutierrez O N, et al. Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiology Ecology, 2008, 66(3): 546-555. |
| [126] |
Gao Q T, Sun G M, Duan J J, et al. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Frontiers in Microbiology, 2022, 13(1): 969524. |
| [127] |
El K A, Armougom F, Gordon J I, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, 11(7): 497-504. |
| [128] |
Pu G, Li P H, Du T R, et al. Adding appropriate fiber in diet increases diversity and metabolic capacity of distal gut microbiota without altering fiber digestibility and growth rate of finishing pig. Frontiers in Microbiology, 2020, 11(1): 533. |
| [129] |
Petry A L, Patience J F, Huntley N F, et al. Xylanase supplementation modulates the microbiota of the large intestine of pigs fed corn-based fiber by means of a stimbiotic mechanism of action. Frontiers in Microbiology, 2021, 12(2): 619970. |
国家重点研发计划项目(2023YFD1600500)
福建省科技厅农业引导性(重点)项目(2023N0008)
福建省自然科学基金项目(2022J01587)
中央引导地方科技发展资金定向项目(2022L3085)
菌草及菌草食药用菌种质创新(KKy22001XA)
/
| 〈 |
|
〉 |