紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应
周昕越 , 王丽萍 , 蒋庆雪 , 马晓冉 , 仪登霞 , 王学敏
草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 89 -104.
紫花苜蓿低温诱导蛋白MsLTI65的分离及其对不同逆境的响应
Isolation of the low-temperature induced proteinMsLTI65 from alfalfa and its response to different stresses
LTI是植物中一类低温诱导蛋白,在植物响应非生物胁迫中发挥着重要的作用。为明确紫花苜蓿LTI蛋白的结构特征及在不同非生物胁迫下的响应,通过RT-PCR和3′/5′ RACE PCR技术,成功从“中苜1号”紫花苜蓿中克隆得到MsLTI65基因cDNA序列。利用生物信息学软件对基因序列和结构进行分析,并与其他植物的LTI蛋白进行系统进化树构建,分析它们之间的进化关系。采用实时荧光定量PCR(qRT-PCR)和蛋白免疫印迹(western-blot,WB)技术分析MsLTI65在不同非生物胁迫条件下的表达模式。序列分析表明,MsLTI65基因编码区序列长2016 bp,编码671个氨基酸,分子量74 kDa,理论等电点为4.55,MsLTI65蛋白与蒺藜苜蓿的MtLTI65蛋白具有较高的同源性。qRT-PCR检测结果表明,MsLTI65基因在冷、盐、干旱、Cu2+、Zn2+和脱落酸(ABA)胁迫下表达量均受到诱导上调表达。抗体制备结果表明,已成功制备MsLTI65多克隆抗体,该多克隆抗体特异性高,能够识别天然LTI65样本。Western-blot验证结果表明,MsLTI65蛋白受冷、干旱、盐、ABA胁迫诱导表达。以上结果表明,MsLTI65基因可能作为一个正向调控因子在冷、干旱、Cu2+、Zn2+、盐等多种非生物胁迫信号和ABA激素信号转导过程中发挥重要作用。
Low temperature-inducible (LTI) proteins are a class of stress-responsive proteins in plants that play a crucial role in response to abiotic stress. To elucidate the structural characteristics of the MsLTI65 protein in alfalfa (Medicago sativa) and its response to various abiotic stresses, the cDNA sequence of the MsLTI65 gene was successfully cloned from alfalfa cultivar “Zhongmu No.1” using reverse-transcription polymerase chain reaction (RT-PCR) and 3′/5′ rapid-amplification of cDNA ends (RACE PCR) techniques. Bioinformatics tools were employed to analyze the gene sequence and structure, and a phylogenetic tree was constructed to explore the evolutionary relationships between MsLTI65 and LTI proteins from other plants. The expression pattern of MsLTI65 under different abiotic stress conditions was analyzed by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Sequence analysis indicated that the MsLTI65 gene had a coding region sequence length of 2016 bp, encoding a polypeptide of 671 amino acids with a molecular weight of 74 kDa and a theoretical isoelectric point of 4.55. The MsLTI65 protein showed high homology with the MtLTI65 protein from Medicago truncatula. The qRT-PCR results showed that MsLTI65 expression was induced and upregulated under cold, salt, drought, Cu2+, Zn2+, and abscisic acid (ABA) stresses. The antibody preparation results indicated that a polyclonal antibody against MsLTI65 was successfully generated. This polyclonal antibody exhibited high specificity and was able to recognize native LTI65 samples. Western-blot validation demonstrated that MsLTI65 protein expression is induced by drought, salt, cold and ABA stresses. The results of this study suggest that MsLTI65 functions as a positive regulatory factor in the signal transduction of various abiotic stresses, including cold, drought, Cu2+, Zn2+, salt, and ABA hormone signaling.
紫花苜蓿 / MsLTI65 / 基因克隆 / 表达分析 / 抗体 / 非生物胁迫
Medicago sativa / MsLTI65 / gene cloning / expression analysis / antibody / abiotic stresses
| [1] |
Yang Q C, Kang J M, Zhang T J, et al. Distribution, breeding and utilization of alfalfa germplasm resources. Chinese Science Bulletin, 2016, 61(2): 261-270. |
| [2] |
杨青川, 康俊梅, 张铁军, 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61(2): 261-270. |
| [3] |
Li X L, Shen Y Y, Wan L Q. Potential analysis and policy recommendations for restructuring the crop farming and developing forage industry in China. Strategic Study of CAE, 2016, 18(1): 94-105. |
| [4] |
李向林, 沈禹颖, 万里强. 种植业结构调整和草牧业发展潜力分析及政策建议. 中国工程科学, 2016, 18(1): 94-105. |
| [5] |
Sun R, Liu Z D, Gao H J, et al. A brief analysis of the protection and restoration of China’s grassland ecological environment. Animal Husbandry Industry, 2024(3): 55-58. |
| [6] |
孙蕊, 刘泽东, 高海娟, 简析我国草原生态环境的保护与修复. 畜牧产业, 2024(3): 55-58. |
| [7] |
Chen C J, Wang X M, Liu W H, et al. Research advances on genetic diversity of grass germplasm. Acta Agrestia Sinica, 2024, 32(2): 349-357. |
| [8] |
陈彩锦, 王学敏, 刘文辉, 草种质资源遗传多样性研究进展. 草地学报, 2024, 32(2): 349-357. |
| [9] |
Sun P B, Wang Z J, Ge G T, et al. Research progress of alfalfa salt and alkali stress tolerance and mitigation measures. Northern Horticulture, 2023(21): 131-137. |
| [10] |
孙鹏波, 王志军, 格根图, 紫花苜蓿耐盐碱胁迫与缓减措施的研究进展. 北方园艺, 2023(21): 131-137. |
| [11] |
Mao P S, Hou L Y, Wang M Y. Limited factors and key technologies of forage seed production in the northern of China. Science Bulletin, 2016, 61(2): 250-260. |
| [12] |
毛培胜, 侯龙鱼, 王明亚. 中国北方牧草种子生产的限制因素和关键技术. 科学通报, 2016, 61(2): 250-260. |
| [13] |
Wang X, Li Z P, Sun J J, et al. Progress of alfalfa breeding in China. Pratacultural Science, 2014, 31(3): 512-518. |
| [14] |
王雪, 李志萍, 孙建军, 中国苜蓿品种的选育与研究. 草业科学, 2014, 31(3): 512-518. |
| [15] |
Ma B, Sun J W, Li S F. Research advances about low temperature induced proteins in plants. Journal of Anhui Agricultural Sciences, 2010, 38(12): 6085-6086, 6094. |
| [16] |
马斌, 孙骏威, 李素芳. 植物低温诱导蛋白的研究进展. 安徽农业科学, 2010, 38(12): 6085-6086, 6094. |
| [17] |
Briggs D R, Siminovitch D. The chemistry of the living bark of the black locust tree in relation to frost hardiness. Ⅱ. Seasonal variations in the electrophoresis pattern of the water-soluble proteins of the bark. Archives of Biochemistry and Biophysics, 1949, 23(1): 8-11. |
| [18] |
Houde M, Danyluk J, Laliberte J F, et al. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiology, 1992, 99(4): 1381-1387. |
| [19] |
Yonca S, Bekir C, Betül B. Differential expression analysis of boron transporters and some stress-related genes in response to 24-epibrassinolide and boron by semi-quantitative RT-PCR in Arabidopsis thaliana (L.) Heynh. Genetika, 2016, 48(2): 547-563. |
| [20] |
Vigeland M D, Manuel S, Torben A, et al. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor. The New Phytologist, 2013, 199(4): 1060-1068. |
| [21] |
Joaquín M, Marta F R, Andrés P, et al. Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. The Plant Journal, 2005, 42(4): 586-597. |
| [22] |
Li J H, Sun H Y, Zhao P J, et al. Cloning and sequence analysis of low-temperature inducible gene (MeLTI6A) of Manihot esculenta. Chinese Agricultural Science Bulletin, 2012, 28(27): 72-77. |
| [23] |
黎娟华, 孙海彦, 赵平娟, 木薯低温诱导基因MeLTI6A的克隆与序列分析. 中国农学通报, 2012, 28(27): 72-77. |
| [24] |
Shi H, Chen Y, Qian Y, et al. Low temperature-induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: Effect on abscisic acid sensitivity and hydrogen peroxide accumulation. Frontiers in Plant Science, 2015, 6: 893. |
| [25] |
Jia H, Zhang S, Ruan M, et al. Analysis and application of RD29 genes in abiotic stress response. Acta Physiologiae Plantarum, 2012, 34: 1239-1250. |
| [26] |
Yang Y Z, Lei Z H, Peng F R. Research advances about low-temperature-induced proteins and the cold tolerance in plants. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(2): 421-428. |
| [27] |
杨玉珍, 雷志华, 彭方仁. 低温诱导蛋白及其与植物的耐寒性研究进展. 西北植物学报, 2007, 27(2): 421-428. |
| [28] |
Jia H L, Shi Y H, Wang X M, et al. Cloning and expression analysis of MsLEA4 promoter from Medicago sativa. Acta Agrestia Sinica, 2019, 27(4): 789-796. |
| [29] |
贾会丽, 石永红, 王学敏, 紫花苜蓿MsLEA4启动子的克隆及表达分析. 草地学报, 2019, 27(4): 789-796. |
| [30] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
| [31] |
Li T. The function of raffinose family oligosaccharides in plant drought stress tolerance and seed vigor of maize and Arabidopsis. Yangling: Northwest A & F University, 2017. |
| [32] |
李涛. 棉子糖系列寡糖(RFOs)在玉米与拟南芥植株抗旱及种子活力中的功能研究. 杨凌: 西北农林科技大学, 2017. |
| [33] |
Wang S P, Liu J, Hong J, et al. Cloning and function analysis of MsPPR1 in alfalfa under drought stress. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
| [34] |
王少鹏, 刘佳, 洪军, 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析. 草业学报, 2023, 32(7): 49-60. |
| [35] |
Zhang L S, Sun Y G, Ji J Q, et al. Flavonol synthase gene MsFLS13 regulates saline-alkali stress tolerance in alfalfa. The Crop Journal, 2023, 11(4): 1218-1229. |
| [36] |
Cen H F, Huang J Q, Shen W H, et al. Cloning of MsUGT87A1 gene in alfalfa and analysis of its expression in the response to abiotic stress. Acta Agrestia Sinica, 2023, 31(6): 1682-1692. |
| [37] |
岑慧芳, 黄洁琼, 申王晖, 紫花苜蓿MsUGT87A1基因克隆及其对非生物胁迫的响应分析. 草地学报, 2023, 31(6): 1682-1692. |
| [38] |
Ma L, Wen H Y, Wang X M, et al. Cloning and function analysis of MsMAX2 gene in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2021, 54(19): 4061-4069. |
| [39] |
马琳, 温红雨, 王学敏, 紫花苜蓿MsMAX2的克隆及功能研究. 中国农业科学, 2021, 54(19): 4061-4069. |
| [40] |
Sun X, Lei T, Yuan S, et al. Progress in research of dehydrins. Journal of Wuhan Botanical Research, 2005, 23(3): 299-304. |
| [41] |
孙歆, 雷韬, 袁澍, 脱水素研究进展. 武汉植物学研究, 2005, 23(3): 299-304. |
| [42] |
Nordin K, Vahala T, Palva E T. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology, 1993, 21: 641-653. |
| [43] |
Wang J, Li B, Liu C C, et al. Advances of the studies on structure and function of promoter. Bulletin of Biotechnology, 2014(8): 40-45. |
| [44] |
王婧, 李冰, 刘翠翠, 启动子结构和功能研究进展. 生物技术通报, 2014(8): 40-45. |
| [45] |
Yang P F, Duan G Q, Hu X W, et al. Overview of higher plant promoters research. Molecular Plant Breeding, 2018, 16(5): 1482-1493. |
| [46] |
杨鹏芳, 段国琴, 胡晓炜, 高等植物启动子研究概述. 分子植物育种, 2018, 16(5): 1482-1493. |
| [47] |
Zhao L, Wang P, Wu Q, et al. Research progress in histone modification of plant involved in the regulation of gene expression response to abiotic stress. Bulletin of Biotechnology, 2020, 36(7): 182-189. |
| [48] |
赵琳, 王璞, 吴琦, 非生物胁迫下植物组蛋白修饰参与基因表达调控的研究进展. 生物技术通报, 2020, 36(7): 182-189. |
| [49] |
Li J X, Zhou L Y, Yuan F, et al. Cloning and expression analysis of MsHB1 gene from Medicago sativa. Acta Agrestia Sinica, 2023, 31(12): 3617-3625. |
| [50] |
李家兴, 周丽莹, 苑峰, 紫花苜蓿MsHB1基因的克隆及表达分析. 草地学报, 2023, 31(12): 3617-3625. |
| [51] |
Liu Y M, Zhou H Y, Wang K, et al. Research on response mechanism of plants to abiotic stress. Journal of Anhui Agricultural Sciences, 2018, 46(16): 35-37, 62. |
| [52] |
刘燕敏, 周海燕, 王康, 植物对非生物胁迫的响应机制研究. 安徽农业科学, 2018, 46(16): 35-37, 62. |
| [53] |
Wang P L, Nie X, Ye Y L, et al. Forskolin improves salt tolerance of Gossypium hirsutum L. by upregulation of GhLTI65. Industrial Crops Products, 2023, 201: 116900. |
| [54] |
Kim S H, Kim J Y, Kim S H, et al. Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.). Plant Cell Reports, 2007, 26(7): 1097-1110. |
| [55] |
Yu C H, Zhu C Y, Duan S F, et al. Comparative transcriptome analysis of response to low temperature during flowering of Coptis teeta Wall. Molecular Plant Breeding, 2022, 20(14): 4642-4653. |
| [56] |
余成华, 朱春艳, 段绍凤, 比较转录组分析云南黄连开花过程对低温的应答. 分子植物育种, 2022, 20(14): 4642-4653. |
| [57] |
Puhakainen T, Hess M W, Mäkelä P, et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology, 2004, 54(5): 743-753. |
| [58] |
Zhang Y J, Sang H T, Wang H Q, et al. Research progress in signal transduction in systemic responses of plants to abiotic stress. Acta Botanica Sinica, 2024, 59(1): 122-133. |
| [59] |
张悦婧, 桑鹤天, 王涵琦, 植物对非生物胁迫系统性反应中信号传递的研究进展. 植物学报, 2024, 59(1): 122-133. |
| [60] |
Shi W J, Wang X J, Liu H, et al. A novel ABA-insensitive mutant in Arabidopsis reveals molecular network of ABA-induced anthocyanin accumulation and abiotic stress tolerance. Journal of Plant Physiology, 2022, 278: 153810. |
| [61] |
Shinozaki K Y, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular Genetics and Genomics, 1993, 236: 331-340. |
| [62] |
Zhang L, Shi J N, Liu G Z. The concept of an advanced version of western blot (WB 2.0) and its perspectives. Progress in Biochemistry and Biophysics, 2019, 46(9): 917-924. |
| [63] |
张柳, 史佳楠, 刘国振. 蛋白质印迹技术升级版(WB 2.0)的概念与设想. 生物化学与生物物理进展, 2019, 46(9): 917-924. |
| [64] |
Shu X T, Ouyang N, Jiang C J, et al. Expression patterns of dehydrin-like proteins in tea plant (Camellia sinensis) by Western-blot analysis. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(12): 2448-2454. |
| [65] |
舒锡婷, 欧阳娜, 江昌俊, 茶树叶片类脱水素蛋白的Western-blot分析. 西北植物学报, 2015, 35(12): 2448-2454. |
财政部和农业农村部:国家现代农业产业技术体系(CARS-34)
中国农业科学院科技创新工程项目(ASTIP-IAS10)
农业种质资源普查收集、保护鉴定服务(19240485)
/
| 〈 |
|
〉 |