基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发
冯雅琪 , 陈嘉慧 , 张静妮 , 隋超 , 陈基伟 , 刘志鹏 , 周强 , 刘文献
草业学报 ›› 2025, Vol. 34 ›› Issue (04) : 137 -149.
基于重测序紫花苜蓿高蛋白、高产关联InDel分子标记开发
Development of high-protein and high-yield associated InDel molecular markers based on re-sequencing in alfalfa
随着高通量测序技术的迅猛发展,测序成本大幅降低,测序速度和数据质量均得到了显著提升,极大地推动了紫花苜蓿基因组的深入研究,进而也为紫花苜蓿不同性状关联的分子标记开发提供了重要基础信息。插入/缺失(insertion/deletion, InDel)多态性标记因其分布广泛、密度高、遗传稳定以及重复性强等优点而受到关注,然而目前其在紫花苜蓿中的研究及应用仍十分有限。本研究基于国内外80份紫花苜蓿材料的基因组重测序数据,通过与紫花苜蓿“中苜1号”参考基因组序列比对挖掘InDel变异位点,开发与高蛋白和高产性状相关的InDel标记。结果表明,在全基因组范围内设计的40个标记中,经聚合酶链式反应(polymerase chain reaction,PCR)验证后,成功开发出29个多态性标记,多态性比率达到72.5%。其中,已开发的InDel_25和InDel_39标记可分别用于高产和优质紫花苜蓿材料的鉴定。本研究开发的InDel标记可结合传统育种方法,有望加速高产、优质紫花苜蓿新品种的培育。
With the rapid development of high-throughput sequencing technology, the sequencing cost has been greatly reduced, and the sequencing speed and data quality have been significantly improved. These developments greatly promote the in-depth study of the alfalfa (Medicago sativa) genome, and thus provide important basic information for the development of molecular markers for the association of different traits in alfalfa. Insertion/deletion (InDel) polymorphic markers have attracted great attention because of their wide distribution, high density, genetic stability, and high reproducibility, but research about them and their application in alfalfa are still very limited. In this study, based on genome resequencing data of 80 alfalfa germplasm lines sourced from China and abroad, we explored the InDel locus by comparing with the reference genome sequence of alfalfa “Zhongmu No.1”, and identified InDel markers related to high-protein and high-yield traits. It was found that of 40 markers identified on a genome-wide scale, 29 polymorphic markers were successfully categorised with a polymorphism ratio of 72.5% after validation by polymerase chain reaction (PCR). Notably, markers designated InDel_25 and InDel_39 are particularly useful for the identification of high-yield and high-quality alfalfa germplasm lines, respectively. It is anticipated that the InDel markers identified in this research will be applied in traditional breeding programs, thereby accelerating the development of new alfalfa varieties with enhanced yield and quality.
alfalfa / InDel molecular markers / yield / quality
| [1] |
Jin J B, Wang T, Cheng Y F, et al. Current situation and prospect of forage breeding in China. Bulletin of Chinese Academy of Sciences, 2021, 36(6): 660-665. |
| [2] |
金京波, 王台, 程佑发, 我国牧草育种现状与展望. 中国科学院院刊, 2021, 36(6): 660-665. |
| [3] |
Nan Z B, Wang Y R, He J S, et al. Achievements, challenges and prospects of herbage seeds industry in China. Acta Prataculturae Sinica, 2022, 31(6): 1-10. |
| [4] |
南志标, 王彦荣, 贺金生, 我国草种业的成就、挑战与展望. 草业学报, 2022, 31(6): 1-10. |
| [5] |
Jing H C, Wang T, Lin R C, et al. Strengthen the research of forage basic biology to ensure forage seed industry and national food security. Chinese Bulletin of Botany, 2022, 57(6): 719-724. |
| [6] |
景海春, 王台, 林荣呈, 加强饲草基础生物学研究,保障饲草种业与国家大粮食安全. 植物学报, 2022, 57(6): 719-724. |
| [7] |
Liu Z P, Zhou Q, Liu W X, et al. Some scientific issues of forage breeding in China. Acta Prataculturae Sinica, 2021, 30(12): 184-193. |
| [8] |
刘志鹏, 周强, 刘文献, 中国牧草育种中的若干科学问题. 草业学报, 2021, 30(12): 184-193. |
| [9] |
Liu Z P, Liu W X, Yang Q C, et al. Progress and existing problems of forage breeding in China. Bulletin of National Natural Science Foundation of China, 2023, 37(4): 528-536. |
| [10] |
刘志鹏, 刘文献, 杨青川, 我国牧草育种进展及存在问题. 中国科学基金, 2023, 37(4): 528-536. |
| [11] |
Hasan N, Choudhary S, Naaz N, et al. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 2021, 19(1): 128-154. |
| [12] |
Gupta P K, Kumar J, Mir R R, et al. Marker-assisted selection as a component of conventional plant breeding. Plant Breeding Reviews, 2010, 33(2): 145-217. |
| [13] |
Du X F, Qian P L, Tang C C, et al. QTL mapping for plant height in foxtail millet based on InDel markers. Journal of Nuclear Agricultural Sciences, 2024, 38(2): 217-225. |
| [14] |
杜晓芬, 钱枰励, 唐楚楚, 基于InDel标记的谷子株高QTL定位. 核农学报, 2024, 38(2): 217-225. |
| [15] |
Huang X, Wu W, Su L, et al. Development and application of InDel markers linked to fruit-shape and peel-colour genes in wax gourd. Genes, 2022, 13(9): 1567-1580. |
| [16] |
Pan W Q, Ma H, Xu X, et al. Indica-japonica untypical plants among hybrid Indica rice: identification by InDel markers. Chinese Agricultural Science Bulletin, 2023, 39(33): 107-113. |
| [17] |
潘伟芹, 马卉, 许学, 利用InDel分子标记鉴定杂交籼稻中籼粳交杂株. 中国农学通报, 2023, 39(33): 107-113. |
| [18] |
Wang B T, Wang J, Wang Z H, et al. Development of dwarf functional marker InDel-220 and its breeding potential in maize. Molecular Plant Breeding, 2024, 22(1): 1-9. |
| [19] |
王帮太, 王静, 王志红, 玉米矮秆功能标记InDel-220开发及育种潜势评价. 分子植物育种, 2024, 22(1): 1-9. |
| [20] |
Zhou Q, Chen T, Wang Y, et al. The development of 204 novel EST-SSRs and their use for genetic diversity analyses in cultivated alfalfa. Biochemical Systematics and Ecology, 2014, 57(4): 227-230. |
| [21] |
Liu Z P, Chen T L, Ma L C, et al. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One, 2013, 8(12): e83549. |
| [22] |
Min X, Zhang Z, Liu Y, et al. Genome-wide development of microRNA-based SSR markers in Medicago truncatula with their transferability analysis and utilization in related legume species. International Journal of Molecular Sciences, 2017, 18(11): 2440-2452. |
| [23] |
Zhang Z, Min X, Wang Z, et al. Genome-wide development and utilization of novel intron-length polymorphic (ILP) markers in Medicago sativa. Molecular Breeding, 2017, 37(7): 87-95. |
| [24] |
Cheng X, Xie H, Zhang K, et al. Medicago truncatula forward genetics: identification of genetic crossing partner for R108 and development of mapping resources for Tnt1 mutants. The Plant Journal, 2022, 111(2): 608-616. |
| [25] |
Chen Y X, Chen Y S, Shi C M, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience, 2018, 7(1): 1-6. |
| [26] |
Li H, Durin R. Fast and accurate short-read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760. |
| [27] |
Liao J J. Rapid extraction of plant DNA by CTAB method. Tianjin Agricultural Sciences, 1993, 3(1): 26. |
| [28] |
廖俊杰. 采用CTAB法快速提取植物DNA. 天津农业科学, 1993, 3(1): 26. |
| [29] |
Jiang Y Q, Chen J N, Zhang S J, et al. Comparison of DNA extraction from different parts of two Hemerocallis species and optimization of the extraction method. Molecular Plant Breeding, 2023, 21(168): 1-8. |
| [30] |
蒋懿清, 陈佳妮, 张世杰, 两种萱草属植物不同部位DNA提取的比较及提取方法的优化. 分子植物育种, 2023, 21(168): 1-8. |
| [31] |
Yue X P. Development of InDel markers based on whole genome resequencing in Brasica napus. Wuhan: Huazhong Agricultural University, 2014. |
| [32] |
岳晓鹏. 基于甘蓝型油菜基因组重测序开发InDel标记. 武汉: 华中农业大学, 2014. |
| [33] |
Shi R X, Zeng Q, Zhao D. SSR, SNP and InDel characterization of Phoebe zhennan based on the transcriptome sequence. Journal of Mountain Agriculture and Biology, 2023, 42(4): 83-87. |
| [34] |
时如霞, 曾琴, 赵丹. 基于楠木转录组的SSR、SNP、InDel分子标记技术特征分析. 山地农业生物学报, 2023, 42(4): 83-87. |
| [35] |
Li J Q, Wang L H, Zhan Q W, et al. Transcriptome characterization and functional marker development in Sorghum sudanense. PLoS One, 2016, 11(5): e0154947. |
| [36] |
Cui J J, Peng J Z, Cheng J W, et al. Development and validation of genome-wide InDel markers with high levels of polymorphism in bitter gourd (Momordica charantia). BMC Genomics, 2021, 22(1): 1-9. |
| [37] |
Jiang H, Pan G, Liu T M, et al. Development and application of novel InDel markers in flax (Linum usitatissimum L.) through whole-genome resequencing. Genetic Resources and Crop Evolution, 2022, 69(4): 1471-1483. |
| [38] |
Liu X, Liu Y, Yang S, et al. Development and characterization of 29 InDel markers from the Mangrove Kandelia obovata genome using a resequencing dataset. Conservation Genetics Resources, 2022, 14(3): 263-266. |
| [39] |
Song X F, Wei H C, Cheng W, et al. Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean. G3 Genes|Genomes|Genetics, 2015, 5(12): 2793-2799. |
| [40] |
Guo Y, Hua Q C, Hu M X, et al. Application and prospect of marker-assisted selection in crop breeding. Journal of Cold-Arid Agricultural Sciences, 2023, 2(9): 785-790. |
| [41] |
郭莹, 化青春, 虎梦霞, 分子标记辅助选择在作物育种中的应用及展望. 寒旱农业科学, 2023, 2(9): 785-790. |
| [42] |
Yang G L, Zhang R X, Wang H, et al. Improving rice blast resistance and fragrance of rice maintainer through marker-assisted selection. Journal of South China Agricultural University, 2022, 43(3): 9-17. |
| [43] |
杨瑰丽, 张瑞祥, 王慧, 利用分子标记辅助选择改良水稻保持系香味和稻瘟病抗性. 华南农业大学学报, 2022, 43(3): 9-17. |
农业生物育种国家科技重大专项,国家自然科学基金项目(32441032)
农业生物育种国家科技重大专项,国家自然科学基金项目(32271748)
财政部和农业农村部:国家现代农业产业技术体系资助
/
| 〈 |
|
〉 |