结缕草DREB基因家族的鉴定及非生物胁迫下的表达模式分析
左志芳 , 李永龙 , 魏雨佳 , 周生辉 , 李岩 , 杨国锋
草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 74 -88.
结缕草DREB基因家族的鉴定及非生物胁迫下的表达模式分析
Identification of DREB genes from Zoysia japonica and their transcript profiles in response to abiotic stress
DREB转录因子属于AP2/ERF超家族的一个分支,在植物生长发育以及胁迫应答中发挥至关重要的调控作用。而在我国优良的暖季型草坪草结缕草中关于DREB家族基因的系统分析目前还未见报道。本研究从结缕草全基因组中共鉴定到64个ZjDREB基因,编码的氨基酸为105~984 aa,分子量为11.42~107.04 kDa,理论等电点为4.09~11.95。系统发育分析显示ZjDREB基因分为A1~A6共6组。蛋白序列的保守基序分析表明motif 1、motif 2和motif 3在所有ZjDREB蛋白序列中的分布相对保守,且其中的61个ZjDREB基因在结缕草14条染色体上呈不均匀分布。对ZjDREB基因的共线性分析中共鉴定到3个片段重复基因对,且基因对的非同义替代与同义替代的比值(Ka/Ks)均小于1,表明其在基因扩张中受纯化选择。顺式作用元件分析显示ZjDREB A1和A2组基因启动子区域含有多个与植物激素和非生物胁迫相关的作用元件。利用qRT-PCR对A1和A2组基因在低温、脱落酸、干旱和盐胁迫下的表达模式进行分析,结果显示A1组基因在低温和脱落酸胁迫处理后上调表达,其中ZjDREB3上调幅度最大;A2组基因在干旱和高盐胁迫后表现出不同的表达模式,其中ZjDREB4的上调幅度最大。本研究结果为进一步探究结缕草ZjDREB基因的功能奠定了基础,也为结缕草的遗传改良提供了新的线索。
DREB transcription factors belong to the AP2/ERF superfamily, and play important roles in plant development and stress responses. However, a systematic analysis of DREB genes in Zoysia japonica, which is a warm-season turfgrass native to China has not been reported. In this study, we identified 64 ZjDREBs from Z. japonica, encoding polypeptides of 105 to 984 amino acids, with molecular weights ranging from 11.42 to 107.04 kDa and theoretical isoelectric points ranging from 4.09 to 11.95. The phylogenetic analysis of 64 ZjDREBs showed that they were divided into six groups from A1 to A6. A conserved motif analysis of ZjDREB protein sequences revealed that motif1, motif2, and motif3 were relatively highly conserved. Sixty-one ZjDREBs were unevenly distributed on 14 chromosomes of Z. japonica. By colinearity analysis, we identified three pairs of segmentally duplicated ZjDREB genes. The non-synonymous∶synonymous (Ka/Ks) was <1, indicating that this gene family might have been subject to purifying selection during its expansion. Analyses of the promoter regions of ZjDREBs in the A1 and A2 groups revealed multiple cis-acting elements related to plant hormones and abiotic stresses. The expression profiles of ZjDREB genes in the A1 and A2 groups under cold, abscisic acid (ABA), drought, and salt stress were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The A1 group genes were up-regulated by cold and ABA treatments, and ZjDREB3 was significantly up-regulated. The A2 group genes showed different expression profiles under drought and salt stress, and ZjDREB4 was significantly up-regulated. Together, these results lay a foundation for further exploration of the functions of ZjDREB genes and provide avenues for the genetic improvement of Z. japonica.
结缕草 / DREB转录因子 / 系统进化 / 非生物胁迫 / 表达模式
Zoysia japonica / DREB transcription factor / phylogenetic evolution / abiotic stress / expression profiling
| [1] |
Zhang X Y, Yang S H, Ding Y L, et al. Molecular mechanism of cold signal perception and transduction in plants. Biotechnology Bulletin, 2023, 39(11): 28-35. |
| [2] |
张晓燕, 杨淑华, 丁杨林, 植物感知和传递低温信号的分子机制. 生物技术通报, 2023, 39(11): 28-35. |
| [3] |
Lee Z, Lim J A, Harikrishna J A, et al. Regulation of plant responses to temperature stress: a key factor in food security and for mitigating effects of climate change. International Journal of Plant Production, 2024, 18(2): 141-159. |
| [4] |
Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23(2): 104-119. |
| [5] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 1998, 10(8): 1391-1406. |
| [6] |
Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences, 1997, 94(3): 1035-1040. |
| [7] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411-432. |
| [8] |
Xue G P. Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Research, 2002, 30(15): e77. |
| [9] |
Sharma M K, Kumar R, Solanke A U, et al. Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Molecular Genetics and Genomics, 2010, 284(6): 455-475. |
| [10] |
Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009. |
| [11] |
Jadhao K, Samal K, Pradhan S, et al. Studies on molecular characterization of DREB gene in Indica rice (Oryza sativa L.). Hereditary Genetics, 2014, 3(3): 1-12. |
| [12] |
Liu S X, Wang X L, Wang H W, et al. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genetics, 2013, 9(9): e1003790. |
| [13] |
Niu X, Luo T L, Zhao H Y, et al. Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses. Gene, 2020, 740: 144514. |
| [14] |
Xu L, Lan Y, Lin M H, et al. Genome-wide identification and transcriptional analysis of AP2/ERF gene family in pearl millet (Pennisetum glaucum). International Journal of Molecular Sciences, 2024, 25(5): 2470. |
| [15] |
Fu W. Genome-wide identification and characterization of the AP2/ERF gene family in quinoa (Chenopodium quinoa) and their expression profiling during abiotic stress conditions. Journal of Plant Growth Regulation, 2024, 43(4): 1118-1136. |
| [16] |
Zhou Y X, Zhou W, Liu H, et al. Genome-wide analysis of the soybean DREB gene family: Identification, genomic organization and expression profiles in response to drought stress. Plant Breeding, 2020, 139(6): 1158-1167. |
| [17] |
Ghorbani R, Zakipour Z, Alemzadeh A, et al. Genome-wide analysis of AP2/ERF transcription factors family in Brassica napus. Physiology and Molecular Biology of Plants, 2020, 26(7): 1463-1476. |
| [18] |
Mushtaq N, Munir F, Gul A, et al. Genome-wide analysis, identification, evolution and genomic organization of dehydration responsive element-binding (DREB) gene family in Solanum tuberosum. PeerJ, 2021, 9: e11647. |
| [19] |
Su J C, Song S L, Wang Y T, et al. Genome-wide identification and expression analysis of DREB family genes in cotton. BMC Plant Biology, 2023, 23(1): 169. |
| [20] |
Qiu W J, Li H Y, Song Y, et al. Genome wide analysis of DREB genes in sugar beet and their potential functions in response to drought stress. Sugar Tech, 2024, 26(5): 1306-1322. |
| [21] |
Wang W L, Sun T X, Fang Z F, et al. Genome‐wide identification of DREB1 transcription factors in perennial ryegrass and functional profiling of LpDREB1H2 in response to cold stress. Physiologia Plantarum, 2024, 176(1): e14210. |
| [22] |
Liu Y M, Cai L Q, Zhu J L, et al. Genome-wide identification, structural characterization and expression profiling of AP2/ERF gene family in bayberry (Myrica rubra). (2024-04-29)[2024-07-01]. https://www.researchsquare.com/article/rs-4318206/v1. |
| [23] |
Ye P Q, Che X L, Liu Y, et al. Genome-wide identification and characterization of the AP2/ERF gene family in loblolly pine (Pinus taeda L.). PeerJ, 2024, 12: e17388. |
| [24] |
Zhu P H, Chen Y, Zhang J F, et al. Identification, classification, and characterization of AP2/ERF superfamily genes in Masson pine (Pinus massoniana Lamb.). Scientific Reports, 2021, 11(1): 5441. |
| [25] |
He X, Duan H L, Luo L J, et al. Morphological characteristics variations of germplasm resources in Zoysia Willd. Molecular Plant Breeding, 2024, 22(13): 4364-4376. |
| [26] |
何潇, 段宏利, 罗丽娟, 结缕草属种质资源形态特征变异. 分子植物育种, 2024, 22(13): 4364-4376. |
| [27] |
Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal, 1998, 16(4): 433-442. |
| [28] |
Donde R, Gupta M K, Gouda G, et al. Computational characterization of structural and functional roles of DREB1A, DREB1B and DREB1C in enhancing cold tolerance in rice plant. Amino Acids, 2019, 51(5): 839-853. |
| [29] |
Moon S J, Min M K, Kim J A, et al. Ectopic expression of OsDREB1G, a member of the OsDREB1 subfamily, confers cold stress tolerance in rice. Frontiers in Plant Science, 2019, 10: 297. |
| [30] |
Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 2007, 50(1): 54-69. |
| [31] |
Hu B, Jin J P, Guo A Y, et al. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31(8): 1296-1297. |
| [32] |
Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37: W202-W208. |
| [33] |
Chen C J, Wu Y, Li J W, et al. TBtools-Ⅱ: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16(11): 1733-1742. |
| [34] |
Voorrips R. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1): 77-78. |
| [35] |
Wang Y P, Tang H B, DeBarry J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49. |
| [36] |
Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. Genome Research, 2009, 19(9): 1639-1645. |
| [37] |
Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
| [38] |
Liu K, Li G J, Yang Q, et al. Research progress in DREB/CBF transcription factor involved in responses in plant to abiotic stress. Biotechnology Bulletin, 2022, 38(5): 201-214. |
| [39] |
刘坤, 李国婧, 杨杞, 参与植物非生物逆境响应的DREB/CBF转录因子研究进展. 生物技术通报, 2022, 38(5): 201-214. |
| [40] |
Feng W Q, Ma L P, Jiang X X, et al. Cloning and expression analysis of a transcription factor gene ZjDREB1.2 from Zoysia. Northern Horticulture, 2018(18): 75-85. |
| [41] |
冯婉倩, 马礼鹏, 蒋笑笑, 结缕草转录因子基因 ZjDREB1.2的克隆及胁迫下的表达分析. 北方园艺, 2018(18): 75-85. |
| [42] |
Feng X W, Cai H W. Cloning of zoysiagrass CBF gene and validation of cold tolerance in transgenic Arabidopsis. Acta Agronomica Sinica, 2014, 40(9): 1572-1578. |
| [43] |
冯勋伟, 才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证. 作物学报, 2014, 40(9): 1572-1578. |
| [44] |
Ke X, Nong J X, Shi D L, et al. Cloning and expression profile of DREB2.2 gene from Zoysia japonica var. pallida cv Jiaodong. Biotechnology Bulletin, 2016, 32(1): 115-123. |
| [45] |
可祥, 农钧琇, 石大林, 日本结缕草 ‘胶东青’DREB2.2基因克隆及表达模式研究. 生物技术通报, 2016, 32(1): 115-123. |
| [46] |
Wang Z, Zhang F, Xuan J, et al. Isolation and expression profiles of the ZjDREB1 gene encoding a DRE-binding transcription factor from zoysiagrass (Zoysia japonica). The Journal of Horticultural Science and Biotechnology, 2012, 87(1): 77-83. |
| [47] |
Li J, Wu Q, Zhang L J, et al. Cloning and expression profiles of a transcription factor gene ZjDREB4.1 in Zoysia japonica under adversity. Biotechnology Bulletin, 2017, 33(2): 80-88. |
| [48] |
李京, 吴奇, 张琳婕, 结缕草转录因子基因 ZjDREB4.1克隆和逆境表达模式. 生物技术通报, 2017, 33(2): 80-88. |
| [49] |
Sharoni A M, Nuruzzaman M, Satoh K, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant and Cell Physiology, 2011, 52(2): 344-360. |
| [50] |
Wang Z W, Yang Y W, Wang P F, et al. Identification and analysis of DREB gene family in Cerasus humilis. Plant Physiology Journal, 2020, 56(3): 413-422. |
| [51] |
汪泽文, 杨依维, 王鹏飞, 欧李DREB基因家族的鉴定与分析. 植物生理学报, 2020, 56(3): 413-422. |
| [52] |
Lu X, Gou Y F, Li X Y, et al. Identification and abiotic stress expression analysis of DREB transcription factor family in yellowhorn. Molecular Plant Breeding, 2023, 21(15): 4948-4961. |
| [53] |
陆昕, 苟亚夫, 李显玉, 文冠果DREB转录因子家族鉴定及非生物胁迫表达分析. 分子植物育种, 2023, 21(15): 4948-4961. |
| [54] |
Jeffares D C, Penkett C J, Bähler J. Rapidly regulated genes are intron poor. Trends in Genetics, 2008, 24(8): 375-378. |
| [55] |
Li Z, Wang G, Liu X H, et al. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. BMC Genomics, 2021, 22(1): 456. |
| [56] |
Zheng J Q, Wang W W, Mei Y, et al. Identification of DREB transcription factor in pepper and expression analysis of DREB gene under waterlogging stresses. Jiangsu Journal of Agricultural Sciences, 2023, 39(1): 148-159. |
| [57] |
郑佳秋, 王薇薇, 梅燚, 辣椒DREB转录因子鉴定及其在涝害胁迫下的表达分析. 江苏农业学报, 2023, 39(1): 148-159. |
| [58] |
Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280(5360): 104-106. |
| [59] |
Zhao L F, Hu Y B, Chong K, et al. ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Annals of Botany, 2010, 105(3): 401-409. |
| [60] |
Upadhyay R K, Gupta A, Soni D, et al. Ectopic expression of a tomato DREB gene affects several ABA processes and influences plant growth and root architecture in an age-dependent manner. Journal of Plant Physiology, 2017, 214: 97-107. |
山东省牧草产业技术体系(SDAIT-23-01)
/
| 〈 |
|
〉 |