高寒草甸不同侵蚀样地植物多样性的差异及其关键影响因子
严双 , 夏菲 , 魏巍 , 王敬龙 , 吴皓阳 , 冉林灵 , 薛云尹 , 石昊 , 郑晒坤 , 王军强 , 贺俊东
草业学报 ›› 2025, Vol. 34 ›› Issue (06) : 1 -13.
高寒草甸不同侵蚀样地植物多样性的差异及其关键影响因子
Differences along an erosion gradient in alpine meadow plant community diversity and factors influencing diversity
以未侵蚀为对照,采用样方法在轻度、中度、强烈侵蚀的高寒草甸每隔一条侵蚀沟随机选取1 m×1 m样方进行植物群落调查并分析物种多样性变化及其关键影响因子。研究结果表明:随着侵蚀程度的加深,以青藏薹草为建群种的优质牧草占比逐渐减少并且逐渐演替成为以臭蒿等毒杂草为优势种的群落。高寒草甸地上生物量先减少后增加,植被盖度和物种多样性逐渐降低,相比未侵蚀样地,轻度、中度和强烈侵蚀样地地上生物量分别下降了38%、69%、16%,植被盖度分别下降了20%、46%、65%,Shannon-Wiener指数分别下降了11%、17%、76%。坡度与高寒草甸植物群落物种多样性呈线性负相关(P<0.001)。水力侵蚀导致土壤质地发生变化从而影响植物生长和植物群落多样性,植物群落多样性指数与土壤有机质、颗粒有机碳、pH、土壤砂粒和黏粒含量极显著相关(P<0.01),其中,Shannon-Wiener指数、Simpson指数和Margalef指数与土壤pH(P<0.001)均呈极显著负相关;Shannon-Wiener指数和Simpson指数与土壤有机质均呈极显著正相关(P<0.01)。植物生长指标与土壤容重呈显著相关(P<0.05),其中,地上生物量与土壤总孔隙度(P<0.01)呈极显著正相关,与土壤容重(P<0.001)呈极显著负相关;植被盖度与土壤pH(P<0.01)和土壤砂粒含量(P<0.01)呈极显著负相关,但与土壤有机质(P<0.001)、颗粒有机碳(P<0.01)、土壤粉粒(P<0.01)和黏粒含量(P<0.01)呈极显著正相关。综上所述,随着侵蚀程度加深,高寒草甸植被盖度和植物多样性逐渐降低,群落结构向单一趋势演替,坡度、土壤有机质和pH是影响高寒草甸侵蚀过程中群落结构变化的主要环境因子。
This study investigated the plant communities in alpine meadow gullies with differing degrees of erosion and analysed the changes in species diversity and the key factors influencing it in gullies with different erosion levels. We used a quadrat method and randomly selected 1 m×1 m sample plots in mildly, moderately and strongly eroded alpine meadows, sampling alternate erosion gullies, and using no erosion as a control. It was found that the proportion of high-quality forage grasses with Carex moorcroftii as the dominant species gradually decreased with increasing severity of erosion and gradually evolved into a community dominated by poisonous weeds such as Artemisia hedinii. Along the gradient of increasing erosion in the studied alpine meadows, above-ground biomass initially decreased and then increased, and vegetation coverage and species diversity gradually decreased. Compared to the non-eroded sample site, the mildly, moderately, and strongly eroded sample sites showed, respectively, a decrease in above-ground biomass of 38%, 69%, and 16%, a decrease in vegetation coverage of 20%, 46%, and 65%, and a decrease in the Shannon-Wiener index of 11%, 17%, and 76%. A linear negative correlation was observed between the slope gradient and the species diversity within the alpine meadow plant community (P<0.001). Soil erosion leads to changes in soil texture that affect plant growth and plant community diversity. Plant community diversity indices were highly significantly correlated with soil organic matter, particulate organic carbon, pH, and soil sand and clay contents (P<0.01). Shannon-Wiener, Simpson and Margalef indices were all highly significantly negatively correlated with soil pH (P<0.001), while Shannon-Wiener and Simpson indices were both highly significantly positively correlated with soil organic matter (P<0.01). Plant growth indicators were significantly correlated with bulk density (P<0.05). Aboveground biomass was highly significantly and positively correlated with total porosity (P<0.01), but highly significantly and negatively correlated with bulk density of the soil (P<0.001). Vegetation coverage was highly significantly negatively correlated with pH (P<0.01) and sand content (P<0.01), but highly significantly positively correlated with soil organic matter (P<0.001), particulate organic carbon (P<0.01), silt content (P<0.01) and clay content (P<0.01). In summary, with increasing severity of erosion, the vegetation coverage and plant diversity of alpine meadows gradually decreased, and the community structure tended to become more homogeneous. Slope, soil organic matter and pH are the main environmental factors influencing changes in community structure in erosion-affected alpine meadows.
alpine meadows / species diversity / biomass / erosion
| [1] |
Wang C Y, Wei M, Wu B D, et al. Alpine grassland degradation reduced plant species diversity and stability of plant communities in the northern Tibet Plateau. Acta Oecologica, 2019, https://doi.org/10.1016/j.actao.2019.05.005. |
| [2] |
Zhang C, Yan R R, Liang Q W, et al. Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes. Acta Prataculturae Sinica, 2021, 30(4): 90-98. |
| [3] |
张超, 闫瑞瑞, 梁庆伟, 不同利用方式下草地土壤理化性质及碳、氮固持研究. 草业学报, 2021, 30(4): 90-98. |
| [4] |
Zhou G, Zhou X, He Y, et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Global Change Biology, 2017, 23(3): 1167-1179. |
| [5] |
Dong S K, Tang L, Liu S L, et al. Relationship between plant species diversity and functional diversity in apline grasslands. Acta Ecologica Sinica, 2017, 37(5): 1472-1483. |
| [6] |
董世魁, 汤琳, 刘世梁, 高寒草地植物物种多样性与功能多样性的关系. 生态学报, 2017, 37(5): 1472-1483. |
| [7] |
Wang S S, Jia L Z, Cai L P, et al. Assessment of grassland degradation on the Tibetan Plateau based on multi-source data. Remote Sensing, 2022, 14(23): 6011. |
| [8] |
Wang Z Q, Zhang Y Z, Yang Y, et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China. Ecological Informatics, 2016, https://doi.org/10.1016/j.ecoinf.2016.03.006. |
| [9] |
Xie G D, Lu C X, Xiao Y, et al. The economic evaluation of grassland ecosystem services in Qinghai-Tibet Plateau. Journal of Mountain Science, 2003, 21(1): 50-55. |
| [10] |
谢高地, 鲁春霞, 肖玉, 青藏高原高寒草地生态系统服务价值评估. 山地学报, 2003, 21(1): 50-55. |
| [11] |
Chen N, Zhang Y J, Zhu J T, et al. Nonlinear responses of productivity and diversity of alpine meadow communities to degradation. Chinese Journal of Plant Ecology, 2018, 42(1): 50-65. |
| [12] |
陈宁, 张扬建, 朱军涛, 高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究. 植物生态学报, 2018, 42(1): 50-65. |
| [13] |
Shao J X. Study on vegetation community characteristics and soil ecological attributes of degraded apline grassland based on Meta analysis. Xining: Qinghai University, 2023. |
| [14] |
邵建翔. 基于Meta分析的退化高寒草地植被与土壤生态属性研究. 西宁: 青海大学, 2023. |
| [15] |
Lal R. Soil degradation by erosion. Land Degradation & Development, 2001, 12(6): 519-539. |
| [16] |
Zheng F L, Wang Z L, Yang Q K. The retrospection and prospect on soil erosion research in China. Chinese Journal of Nature, 2008, 30(1): 12-16, 63. |
| [17] |
郑粉莉, 王占礼, 杨勤科. 我国土壤侵蚀科学研究回顾和展望. 自然杂志, 2008, 30(1): 12-16, 63. |
| [18] |
Feng X, Wang Y, Chen L, et al. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology, 2010, 118(3): 239-248. |
| [19] |
Zhang H. Soil erosion resistance of typical farmland and grassland in Ya’an City. Ya’an:Sichuan Agricultural University, 2023. |
| [20] |
张恒. 雅安市典型农、草地土壤侵蚀阻力变化研究. 雅安: 四川农业大学, 2023. |
| [21] |
Zhao S M, Yang C L, Xu L. Prediction of soil erosion at Yangzonghai Lake watershed based on GIS and USLE. Environmental Science Survey, 2007(4): 1-4. |
| [22] |
赵世民, 杨常亮, 徐玲. 基于USLE和GIS的阳宗海流域土壤侵蚀量预测研究. 环境科学导刊, 2007(4): 1-4. |
| [23] |
Xu H F. Water conservancy encyclopedia China (Second Edition). Beijing: China Water & Power Press, 2012. |
| [24] |
徐慧芳. 中国水利百科全书(第二版). 北京: 中国水利水电出版社, 2012. |
| [25] |
Liu Q, Mu X M, Gao P, et al. Review of studies on the effects of soil water erosionon physical and chemical properties of soil quality. Research of Soil and Water Conservation, 2020, 27(6): 386-392. |
| [26] |
刘强, 穆兴民, 高鹏, 土壤水力侵蚀对土壤质量理化指标影响的研究综述. 水土保持研究, 2020, 27(6): 386-392. |
| [27] |
Xia Q, He B H. Influence of soil physical properties on hydraulic erosion. Technology of Soil and Water Conservation, 2006(5): 12-15. |
| [28] |
夏青, 何丙辉. 土壤物理特性对水力侵蚀的影响. 水土保持应用技术, 2006(5): 12-15. |
| [29] |
Yang J Y. Organic carbon loss driven by hydraulic erosion on the Qinghai-Tibet Plateau. Yangling: Northwest A&F University, 2024. |
| [30] |
杨嘉仪. 青藏高原水力侵蚀驱动的有机碳流失. 杨凌: 西北农林科技大学, 2024. |
| [31] |
Yang F, Huang L M, Li D C, et al. Vertical distributions of soil organic and inorganic carbon and their controls along toposequences in an alpine region. Acta Pedologica Sinica, 2015, 52(6): 1226-1236. |
| [32] |
杨帆, 黄来明, 李德成, 高寒山区地形序列土壤有机碳和无机碳垂直分布特征及其影响因素. 土壤学报, 2015, 52(6): 1226-1236. |
| [33] |
Teng H F. Assimilating multi-source data to madel and map potential soil loss in China. Hangzhou: Zhejiang University, 2017. |
| [34] |
滕洪芬. 基于多源信息的潜在土壤侵蚀估算与数字制图研究. 杭州: 浙江大学, 2017. |
| [35] |
Li G R, Li X L, Chen W T, et al. Influences of rain erosion on soil nutrient contents of the deteriorated grassland. Research of Soil and Water Conservation, 2018, 25(2): 40-45. |
| [36] |
李国荣, 李希来, 陈文婷, 降雨侵蚀对退化草地土壤养分含量的影响. 水土保持研究, 2018, 25(2): 40-45. |
| [37] |
Shao Q Q, Xiao T, Liu J Y, et al. Soil erosion rates and characteristics of typical alpine meadow using 137Cs technique in Qinghai-Tibet Plateau. Chinese Science Bulletin, 2011, 56(13): 1019-1025. |
| [38] |
邵全琴, 肖桐, 刘纪远, 三江源区典型高寒草甸土壤侵蚀的137Cs定量分析. 科学通报, 2011, 56(13): 1019-1025. |
| [39] |
Ma H X, Zhang D G, Chen J, et al. Soil erosion on slopes of alpine meadow in the eastern Qilian Mountains under simulated grazing. Acta Agrestia Sinica, 2019, 27(5): 1347-1354. |
| [40] |
马海霞, 张德罡, 陈瑾, 祁连山东段高寒草甸模拟放牧下的坡面土壤水蚀特征. 草地学报, 2019, 27(5): 1347-1354. |
| [41] |
Yang W B, Liu N, Cai Q G, et al. Research progress on the effects of hydraulic erosion on soil carbon cycle and soil microbial diversity. Journal of Soil and Water Conservation, 2024, 38(1): 14-21, 2. |
| [42] |
杨文博, 刘娜, 蔡强国, 水力侵蚀对土壤碳循环及土壤微生物多样性影响的研究进展. 水土保持学报, 2024, 38(1): 14-21, 2. |
| [43] |
Wang S Q. Study on the effects of water erosion on sediment organic carbon and microbial diversity in sloping brown soil. Jinan: Shandong Normal University, 2024. |
| [44] |
王善琦. 水蚀过程对棕壤坡耕地侵蚀泥沙有机碳和微生物多样性影响研究. 济南: 山东师范大学, 2024. |
| [45] |
Long J, Huang C Y, Teng Y, et al. Characteristics of soil microbes of reclaimed minesoil in red soil area, Southern China. Journal of Soil and Water Conservation, 2002, 16(2): 126-128, 132. |
| [46] |
龙健, 黄昌勇, 腾应, 我国南方红壤矿山复垦土壤的微生物特征研究. 水土保持学报, 2002, 16(2): 126-128, 132. |
| [47] |
Xu X L, Ma K M, Fu B J, et al. Research review of the relationship between vegetation and soil loss. Acta Ecologica Sinica, 2006, 26(9): 3137-3143. |
| [48] |
徐宪立, 马克明, 傅伯杰, 植被与水土流失关系研究进展. 生态学报, 2006, 26(9): 3137-3143. |
| [49] |
Li X Z. Response of biogenic elements to water and density in vegetated legume grassland in water-wind erosion crisscross region. Yangling: Northwest A&F University, 2012. |
| [50] |
李学章. 水蚀风蚀交错带人工豆科草地生源要素的水分和密度响应特征. 杨凌: 西北农林科技大学, 2012. |
| [51] |
Yang H, Jiang L, Li L, et al. Diversity-dependent stability under mowing and nutrient addition: Evidence from a 7-year grassland experiment. Ecology Letters, 2012, 15(6): 619-626. |
| [52] |
Guo T F, Duan Q F. Standards for classification and gradation of soil erosion, SL190-2007. Beijing: China Water & Power Press, 2008. |
| [53] |
郭廷辅, 段巧甫. 土壤侵蚀分类分级标准,SL190-2007. 北京: 中国水利水电出版社, 2008. |
| [54] |
Lu R K. Methods of agrochemical analysis of soils. Beijing: China Agricultural Science and Technology Press, 2000. |
| [55] |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
| [56] |
Liang A Z, Zhang X P, Yang X M, et al. Dynamics of soil particulate organic carbon and mineral-incorporated organic carbon in black soils in northeast China. Acta Pedologica Sinica, 2010, 47(1): 153-158. |
| [57] |
梁爱珍, 张晓平, 杨学明, 黑土颗粒态有机碳与矿物结合态有机碳的变化研究. 土壤学报, 2010, 47(1): 153-158. |
| [58] |
Yan B X, Tang J. Study on black soil erosion rate and the transformation of soil quality influenced by erosion. Geographical Research, 2005, 24(4): 499-506. |
| [59] |
阎百兴, 汤洁. 黑土侵蚀速率及其对土壤质量的影响. 地理研究, 2005, 24(4): 499-506. |
| [60] |
Deng Y, Li F, Yao S R, et al. Vegetation and soil characteristics of degraded grassland and their relationship. Pratacultural Science, 2021, 38(7): 1260-1269. |
| [61] |
邓燕, 李钒, 姚树冉, 不同程度退化草地的植被土壤特征及其相互间的关系. 草业科学, 2021, 38(7): 1260-1269. |
| [62] |
Ren S L, Yi S H, Chen J J, et al. Response of green functional vegetation cover of alpine grassland to climate warming and human activities. Pratacultural Science, 2013, 30(4): 506-514. |
| [63] |
任世龙, 宜树华, 陈建军, 高山草地植被盖度对气候变暖和人类活动的响应. 草业科学, 2013, 30(4): 506-514. |
| [64] |
Wang X X, Dong S K, Sherman R, et al. A comparison of biodiversity-ecosystem function relationships in alpine grasslands across a degradation gradient on the Qinghai-Tibetan Plateau. The Rangeland Journal, 2015, 37(1): 45-55. |
| [65] |
Schwartz M W, Brigham C A, Hoeksema J D, et al. Linking biodiversity to ecosystem function: Implications for conservation ecology. Oecologia, 2000, 122(3): 297-305. |
| [66] |
Sun H Q, Lin G J, Li X L, et al. Analysis of vegetation community structure and productivity of different degraded grasslands of alpine meadows in the Sanjiangyuan area. Heilongjiang Animal Science and Veterinary Medicine, 2013(19): 1-3. |
| [67] |
孙海群, 林冠军, 李希来, 三江源地区高寒草甸不同退化草地植被群落结构及生产力分析. 黑龙江畜牧兽医, 2013(19): 1-3. |
| [68] |
She Y D, Yang X Y, Ma L, et al. Study on the characteristics and interrelationship of plant community and soil in degraded alpine meadow. Acta Agrestia Sinica, 2021, 29(S1): 62-71. |
| [69] |
佘延娣, 杨晓渊, 马丽, 退化高寒草甸植物群落和土壤特征及其相互关系研究. 草地学报, 2021, 29(S1): 62-71. |
| [70] |
Li Y S, Wang G X, Wang J D, et al. Soil erosion of meadow soils on the Tibetan Plateau studied by 137Cs tracer method. Mountain Research, 2007(1): 114-121. |
| [71] |
李元寿, 王根绪, 王军德, 137Cs示踪法研究青藏高原草甸土的土壤侵蚀. 山地学报, 2007(1): 114-121. |
| [72] |
Teh C B S. The stability of individual macroaggregate size fractions of ultisol and oxisol soils. Journal of Agricultural Science and Technology, 2012, 14(2): 459-466. |
| [73] |
Yang S J, Xiao M, Zhang Y, et al. Causes of grassland degradation in Aba Prefecture and suggestions for countermeasures. Contemporary Animal Husbandry, 2023(7): 58-61. |
| [74] |
杨树晶, 肖敏, 张燕, 阿坝州草地退化原因及对策建议. 当代畜牧, 2023(7): 58-61. |
| [75] |
Ren Q J, Cui X L, Zhao B B. Effects of grazing on plant community structure and productivity in alpine meadows. Acta Prataculturae Sinica, 2008, 17(6): 134-140. |
| [76] |
仁青吉, 崔现亮, 赵彬彬. 放牧对高寒草甸植物群落结构及生产力的影响. 草业学报, 2008, 17(6): 134-140. |
| [77] |
Lal R. Soil erosion and land degradation: The global risks. Advances in Soil Science: Soil Degradation, 1990, 11: 129-172. |
| [78] |
Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001, 37(3): 701-708. |
| [79] |
Sun Y, He M Z, Wang L. Effects of precipitation control on plant diversity and biomass in a desert region. Acta Ecologica Sinica, 2018, 38(7): 2425-2433. |
| [80] |
孙岩, 何明珠, 王立. 降水控制对荒漠植物群落物种多样性和生物量的影响. 生态学报, 2018, 38(7): 2425-2433. |
| [81] |
Hooper D U, Chapin III F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 2005, 75(1): 3-35. |
| [82] |
Oliver T H, Isaac N J B, August T A, et al. Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 2015, 6(1): 10122. |
| [83] |
Ren Y J, Lü Y H, Fu B J. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: A Meta-analysis. Ecological Engineering, 2016, https://doi.org/10.1016/j.ecoleng.2016.06.082. |
| [84] |
Zhang Z H, Zhou H K, Zhao X Q, et al. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau. Biodiversity Science, 2018, 26(2): 111-129. |
| [85] |
张中华, 周华坤, 赵新全, 青藏高原高寒草地生物多样性与生态系统功能的关系. 生物多样性, 2018, 26(2): 111-129. |
| [86] |
Wang X F, Ma Y, Zhang G F, et al. Relationship between plant community diversity and ecosystem multifunctionality during alpine meadow degradation. Acta Agrestia Sinica, 2021, 29(5): 1053-1060. |
| [87] |
王晓芬, 马源, 张格非, 高寒草甸退化阶段植物群落多样性与系统多功能性的联系. 草地学报, 2021, 29(5): 1053-1060. |
| [88] |
He J S, Bu H Y, Hu X W, et al. Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 2020, 65(34): 3898-3908. |
| [89] |
贺金生, 卜海燕, 胡小文, 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 2020, 65(34): 3898-3908. |
| [90] |
Mipam T D, Zhong L L, Liu J Q, et al. Productive overcompensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau. Frontiers in Plant Science, 2019, https://doi.org/10.3389/fpls.2019.00925. |
| [91] |
Zhang C S, Xie G D, Bao W K, et al. Effects of topographic factors on the plant species richness and distribution pattern of alpine meadow in source region of Lancang River, Southwest China. Chinese Journal of Ecology, 2012, 31(11): 2767-2774. |
| [92] |
张昌顺, 谢高地, 包维楷, 地形对澜沧江源区高寒草甸植物丰富度及其分布格局的影响.生态学杂志, 2012, 31(11): 2767-2774. |
| [93] |
Zhang Z Y, Cheng Y C, Cheng L, et al. Characteristics of vegetation and soil in the water level fluctuation zone of the Wanzhou Region of Three Gorges Reservoir. Journal of Hydroecology, 2016, 37(2): 24-33. |
| [94] |
张志永, 程郁春, 程丽, 三峡库区万州段消落带植被及土壤理化特征分析. 水生态学杂志, 2016, 37(2): 24-33. |
| [95] |
Zhang Q P, Wang J, Wang Q. Effects of abiotic factors on plant diversity and species distribution of alpine meadow plants. Ecological Informatics, 2021, https://doi.org/10.1016/j.ecoinf.2021.101210. |
| [96] |
Cheng S D, Li Z B, Lu K X, et al. Spatio-temporal variations in vegetation coverage and correlation with geomorphologic factors in Wenanyi Watershed. Journal of Xi’an University of Technology, 2011, 27(2): 145-150. |
| [97] |
程圣东, 李占斌, 鲁克新, 文安驿流域植被覆盖度时空分异及其与地貌因子关系研究. 西安理工大学学报, 2011, 27(2): 145-150. |
| [98] |
Marden M, Rowan D, Phillips C. Stabilising characteristics of New Zealand indigenous riparian colonising plants. Plant and Soil, 2005, 278(1): 95-105. |
| [99] |
Tang M Y, Yang Y X. Analysis of vegetation and soil degradation characteristics under different human disturbance in lakeside wetland, Napahai. Acta Ecologica Sinica, 2013, 33(20): 6681-6693. |
| [100] |
唐明艳, 杨永兴. 不同人为干扰下纳帕海湖滨湿地植被及土壤退化特征. 生态学报, 2013, 33(20): 6681-6693. |
| [101] |
Vonlanthen C M, Kammer P M, Eugster W, et al. Alpine vascular plant species richness: The importance of daily maximum temperature and pH. Plant Ecology, 2006, 184(1): 13-25. |
| [102] |
Wang C T, Wang Q L, Jing Z C, et al. Changes in root system and soil physico-chemical characteristics of alpine small tarragon meadow vegetation under different grazing gradients. Acta Prataculturae Sinica, 2008(5): 9-15. |
| [103] |
王长庭, 王启兰, 景增春, 不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化. 草业学报, 2008(5): 9-15. |
| [104] |
Hu C J, Liu G H, Guo L, et al. Effects of soil erosion on soil physicochemical properties and soil microorganisms. Arid Zone Research, 2014, 31(4): 702-708. |
| [105] |
胡婵娟, 刘国华, 郭雷, 土壤侵蚀对土壤理化性质及土壤微生物的影响. 干旱区研究, 2014, 31(4): 702-708. |
| [106] |
Berhe A A, Barnes R T, Six J, et al. Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. Annual Review of Earth and Planetary Sciences, 2018, 46(1): 521-548. |
| [107] |
Li S S, Si X J, Jiang F S, et al. Root architecture of eight Gramineae plant species in the Benggang area of Changting County. Acta Prataculturae Sinica, 2018, 27(10): 215-222. |
| [108] |
李思诗, 司晓静, 蒋芳市, 长汀县崩岗区8种禾本科植物根系构型特征. 草业学报, 2018, 27(10): 215-222. |
| [109] |
Wu M M, Liu J D, Lin X P, et al. Effects of vegetation restoration on soil iron-aluminum oxides and physical and chemical properties in the eroded red soil area. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(3): 386-391. |
| [110] |
吴敏敏, 刘俊第, 林雪萍, 植被恢复对红壤侵蚀区土壤铁铝氧化物和理化性质的影响. 福建农林大学学报(自然科学版), 2020, 49(3): 386-391. |
| [111] |
Kang Z J. Study on the effect of roots of two herbaceous plants on soil mechanical properties and erosion resistance. Shijiazhuang: Shijiazhuang Tiedao University, 2023. |
| [112] |
康子健. 两种草本植物根系对土壤力学性能及抗侵蚀能力影响规律研究. 石家庄: 石家庄铁道大学, 2023. |
西藏自治区重点研发与转化项目(XZ202201ZY0005N)
四川省自然科学基金项目(2024NSFSC2074)
四川省自然科学基金项目(2022NSFSC1708)
2023 年中央林业草原改革发展资金项目(GZFCG2023-17620)
/
| 〈 |
|
〉 |