补饲对放牧滩羊生长性能、血清生化及代谢组的影响
Effects of supplemental feeding on growth rate, and serum biochemical and metabolomic parameters of grazing Tan sheep
本试验旨在探究补饲水平对放牧滩羊生长性能、血液生化、抗氧化及血液代谢组的影响。选取体况一致、体重相近[(23.38±0.70) kg]的3月龄去势公滩羊24只,随机分为4组。NC组(对照组)只放牧,LE(低能量组)、ME(中能量组)、HE(高能量组)组(试验组)先补饲精料再放牧,各组补饲精料消化能水平分别为15.91(LE)、17.63(ME)和18.17(HE) MJ·kg-1。预试期12 d,正试期90 d。结果显示:1)与NC和LE组相比,HE、ME组滩羊的末重、平均日增重均显著增加(P<0.05)。2)ME组的经济效益高于其他组。3)滩羊血液中空腹血糖、总胆固醇、甘油三酯、肌酐含量,天门冬氨酸氨基转移酶活性和低密度脂蛋白胆固醇浓度随着饲粮能量水平的上升呈增加趋势,其中HE组的甘油三酯含量显著高于其他组(P<0.05)。4)能量水平可显著影响抗氧化能力,HE组丙二醛含量显著高于NC和LE组(P<0.05),ME组总抗氧化能力显著高于NC组(P<0.05),NC组谷胱甘肽过氧化物酶活性显著高于LE和ME组(P<0.05)。5)血浆代谢组学分析共鉴定出17种代谢物差异显著,富集的代谢通路主要有嘌呤代谢、核苷酸代谢、初级胆汁酸生物合成、花生四烯酸代谢、胆固醇代谢、酪氨酸代谢等。综上所述,提高能量水平可有效提升放牧滩羊的生长性能,这种改善可能是通过调节嘌呤代谢、花生四烯酸代谢等途径及其中间代谢产物来调控机体的抗氧化和免疫功能。在本试验条件下,精料补饲水平为0.45 kg·d-1时显示出较好的效果。
The aim of this experiment was to investigate the effects of supplemental feeding on growth rate, blood biochemistry, and antioxidant and blood metabolomic parameters of grazing Tan sheep. In the experiment, twenty-four 3-month-old castrated male Tan sheep, with similar body weight (23.38±0.70 kg), were randomly divided into four groups: a ‘no concentrate’ group (NC, control) which were grazed only, and low energy (LE), medium energy (ME), and high energy (HE) groups which were the experimental groups and received supplemental concentrate feed before grazing. The digestible energy content of supplemented concentrate was 15.91, 17.63 and 18.17 MJ·kg-1 for LE, ME and HE, respectively. There was a pre-trial adjustment period lasting 12 days and the experimental period lasted for 90 days. The results show: 1) Compared with NC and LE, the final weight and daily weight gain of the HE and ME groups was significantly increased (P<0.05). 2) The economic return of ME was higher than the economic returns from the other groups. 3) Fasting blood glucose, and levels of total cholesterol, triglycerides, creatinine, aspartate aminotransferase and low-density lipoprotein cholesterol concentrations in the blood of the sheep all tended to increase with increase in supplemental concentrate energy level, with triglyceride content in HE being notably higher than in the other groups (P<0.05). 4) The energy level markedly affected the animals’ antioxidant capacity; the serum malondialdehyde content in HE was significantly higher than in NC and LE (P<0.05). In addition, the total antioxidant capacity in ME was notably higher than the NC (P<0.05). Moreover, glutathione peroxidase activity in NC was notably higher than in LE and ME (P<0.05). 5) The plasma metabolomics analysis identified a total of 17 metabolites with significant differences. The enriched metabolic pathways were mainly purine metabolism, nucleotide metabolism, primary bile acid biosynthesis, arachidonic acid metabolism, cholesterol metabolism, and tyrosine metabolism. In summary, increasing energy level effectively improved the growth rate of grazing Tan sheep. Blood biochemistry and metabolomic data indicate this improvement may be through the regulation of purine metabolism, arachidonic acid metabolism and other pathways and their intermediate metabolites to enhance body antioxidant and immune functions. Under the conditions of this experiment, the supplemental concentrate level of 0.45 kg·animal-1·d-1 (ME) showed the best effect.
能量 / 人工草地 / 宁夏滩羊 / 放牧 / 抗氧化 / 血浆代谢
energy / artificial grassland / Ningxia Tan sheep / grazing / antioxidant / plasma metabolome
| [1] |
Zhao Z W, Ma L N, Ma Q, et al. Fattening effect of different age of lemons and their addition levels on Salt Lake beach goats. Heilongjiang Animal Science and Veterinary Medicine, 2020(13): 121-123. |
| [2] |
赵正伟, 马丽娜, 马青, 不同树龄柠条及其添加水平对盐池滩羊的育肥效果. 黑龙江畜牧兽医, 2020(13): 121-123. |
| [3] |
Huang H. Effects of feeding regimens on lipids metabolism and meat quality of Sunit sheep. Hohhot: Inner Mongolia Agricultural University, 2021. |
| [4] |
黄欢. 不同饲养方式对苏尼特羊脂肪代谢及肉品质的影响. 呼和浩特: 内蒙古农业大学, 2021. |
| [5] |
Pulungan M A, Suzuki S, Gavina M K A, et al. Grazing enhances species diversity in grassland communities. Scientific Reports, 2019, 9(1): 11201. |
| [6] |
Liu C, Li H, Huang J, et al. Study on the changes of forage nutrient and the digestive metabolism and energy requirements of lambs in native grassland. Acta Agrestia Sinica, 2023, 31(11): 3415-3422. |
| [7] |
刘程, 李慧, 黄晶, 天然草地牧草营养变化及羔羊消化代谢、能量需求的研究. 草地学报, 2023, 31(11): 3415-3422. |
| [8] |
Yi S, Wu H, Liu Y, et al. Concentrate supplementation improves cold-season environmental fitness of grazing yaks: responsive changes in the rumen microbiota and metabolome. Frontiers in Microbiology, 2023, 14: 1247251. |
| [9] |
Hao C, Gao Q, Zhang J, et al. Effects of grape residue supplementation in diet on Liangfeng chicken growth performance, nutrient metabolism and blood biochemistry. Journal of Applied Animal Research, 2022, 50(1): 567-573. |
| [10] |
Momen S M S, Hosseini M M S, Tahmasbi R, et al. Effect of energy and protein levels in supplemental diets on performance of Rayeni cashmere does and goat kids under natural grazing conditions. Journal of Animal and Feed Sciences, 2021, 30(4): 303-311. |
| [11] |
Xue B C, Zhang J X, Wang Z S, et al. Metabolism response of grazing yak to dietary concentrate supplementation in warm season. Animal, 2021, 15(3): 100175. |
| [12] |
Cheng Z Z, Aibibula Y, Li F M, et al. Evaluation of feeding effect of pepper straw and its silage with different treatments on lambs. Chinese Journal of Animal Nutrition, 2024, 36(1): 387-396. |
| [13] |
程志泽, 艾比布拉·伊马木, 李凤鸣, 辣椒秸秆及其不同处理的青贮对羔羊饲喂效果评价. 动物营养学报, 2024, 36(1): 387-396. |
| [14] |
Baira E, Dagla I, Siapi E, et al. UHPLC-HRMS-based tissue untargeted metabolomics study of naringin and hesperidin after dietary supplementation in chickens. Food Chemistry, 2018, 269(32): 276-285. |
| [15] |
Xin G S, Yang J, Li R G, et al. Dietary supplementation of hemp oil in teddy dogs: Effect on apparent nutrient digestibility, blood biochemistry and metabolomics. Bioengineered, 2022, 13(3): 6173-6187. |
| [16] |
Lu L Q, Shi C X, Hao R K, et al. Effect of dietary energy levels on growth performance, nutrient apparent digestibility and serum biochemical indices of Angus bulls. Chinese Journal of Animal Nutrition, 2022, 34(7): 4464-4473. |
| [17] |
卢连强, 史长笑, 郝日康, 饲粮能量水平对安格斯公牛生长性能、养分表观消化率和血清生化指标的影响. 动物营养学报, 2022, 34(7): 4464-4473. |
| [18] |
Biligetu. Effects of different feeding patterns on villus quality and blood biochemical parameters of Arbas cashmere goats. Hohhot: Inner Mongolia Agricultural University, 2019. |
| [19] |
毕力格吐. 不同饲养模式对阿尔巴斯绒山羊绒毛品质及血液生化指标的影响. 呼和浩特: 内蒙古农业大学, 2019. |
| [20] |
Xue B, Hong Q, Li X, et al. Hepatic injury induced by dietary energy level via lipid accumulation and changed metabolites in growing semi-fine wool sheep. Frontiers in Veterinary Science, 2021, 8: 745078. |
| [21] |
Zhu Y B, Sun G M, Dunzhu L S, et al. High energy level diet improves the growth performance and rumen fermentation of yaks in cold weather. Frontiers in Veterinary Science, 2023, 10: 1212422. |
| [22] |
Blake N E, Walker M, Plum S, et al. Predicting dry matter intake in beef cattle. Journal of Animal Science, 2023, 101: 269. |
| [23] |
Bargo F, Muller L D, Delahoy J E, et al. Milk response to concentrate supplementation of high producing dairy cows grazing at two pasture allowances. Journal of Dairy Science, 2002, 85(7): 1777-1792. |
| [24] |
He Z F, Xie J P, Chen P, et al. Effects of different protein and energy levels of diets on growth performance, nutrient apparent digestibility and serum biochemical indexes of fattening yaks in shelter feeding. Chinese Journal of Animal Nutrition, 2024, 36(3): 1698-1712. |
| [25] |
何振富, 谢建鹏, 陈平, 不同蛋白质、能量水平饲粮对舍饲育肥牦牛生长性能、养分表观消化率及血清生化指标的影响. 动物营养学报, 2024, 36(3): 1698-1712. |
| [26] |
Guo S, Yang H C, Li R G, et al. Effects of grazing and housing feeding patterns on meat quality, rumen environment and microbiota structure of Tan sheep. Southwest China Journal of Agricultural Sciences, 2023, 36(8): 1798-1807. |
| [27] |
郭帅, 杨慧超, 李瑞国, 放牧与舍饲模式对滩羊肉品质、瘤胃环境及菌群结构的影响. 西南农业学报, 2023, 36(8): 1798-1807. |
| [28] |
Wang J Q, Lu D X, Yang H J, et al. Feeding standard of meat-producing sheep and goats: NY/T 816-2004. Beijing: China Agricultural Press, 2004. |
| [29] |
王加启, 卢德勋, 杨红建, 肉羊饲养标准: NY/T 816-2004. 北京: 中国农业出版社, 2004. |
| [30] |
Xiao Z M, Fan X, Ma D X, et al. GB/T 6432-2018. Determination of crude protein in feeds-Kjeldahl method. Beijing: Standards Press of China, 2018. |
| [31] |
肖志明, 樊霞, 马东霞, 饲料中粗蛋白的测定 凯氏定氮法: GB/T 6432-2018. 北京: 中国标准出版社, 2018. |
| [32] |
Li H L, Zhao C H, Jia Q, et al. Determination of acid detergent fiber in feedstuff (ADF): NY/T 1459-2007. Beijing: China Agricultural Press, 2007. |
| [33] |
李会玲, 赵彩会, 贾青, 饲料中酸性洗涤纤维的测定: NY/T 1459-2007. 北京: 中国农业出版社, 2007. |
| [34] |
Wang J Q, Yu J G, Wu K Q, et al. Determination of neutral detergent fiber in feedstuffs: GB/T 20806-2006. Beijing: Standards Press of China, 2006. |
| [35] |
王加启, 于建国, 吴克谦, 饲料中中性洗涤纤维(NDF)的测定: GB/T 20806-2006. 北京: 中国标准出版社, 2006. |
| [36] |
Gao L H, Wang S S, Huang T, et al. Determination of calcium in feeds: GB/T 6436-2018. Beijing: Standards Press of China, 2018. |
| [37] |
高丽红, 王思思, 黄婷, 饲料中钙的测定: GB/T 6436-2018. 北京: 中国标准出版社, 2018. |
| [38] |
Shang J, Hua X H, Huang S X, et al. Determination of phosphorus in feeds-Spectrophotometry: GB/T 6437-2018. Beijing: Standards Press of China, 2006. |
| [39] |
商军, 华贤辉, 黄士新, 饲料中总磷的测定-分光光度法: GB/T 6437-2018. 北京: 中国标准出版社, 2006. |
| [40] |
Yang H C. Effects of different breeding models on growth performance, meat quality, and related metabolism of Ningxia Tan sheep. Yinchuan: Ningxia University, 2022. |
| [41] |
杨慧超. 饲养方式对宁夏滩羊生长性能、肉品质以及相关代谢的影响. 银川: 宁夏大学, 2022. |
| [42] |
Liu H, Ran T, Zhang C, et al. Comparison of rumen bacterial communities between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) fed a low protein diet with different energy levels. Frontiers in Microbiology, 2022, 13: 982338. |
| [43] |
Wanjala G, Kichamu N, Strausz P, et al. On-station comparative analysis of reproductive and survival performance between Red Maasai, Dorper, and Merino sheep breeds. Animal, 2023, 17(3): 100715. |
| [44] |
Song S, Wu J, Zhao S, et al. The effect of periodic energy restriction on growth performance, serum biochemical indices, and meat quality in sheep. Journal of Animal Science, 2018, 96(10): 4251-4263. |
| [45] |
Williams K T, Weigel K A, Coblentz W K, et al. Effect of diet energy level and genomic residual feed intake on bred Holstein dairy heifer growth and feed efficiency. Journal of Animal Science, 2022, 105(3): 2201-2214. |
| [46] |
Wang D F, Zhou L L, Li M, et al. Effects of different nutritional levels of diet on the growth performance and organ indexes in fattening Hainan black goats. China Animal Husbandry and Veterinary Medicine, 2013, 40(2): 62-66. |
| [47] |
王定发, 周璐丽, 李茂, 不同营养水平日粮对海南黑山羊肥育羔羊生长性能和器官指数的影响. 中国畜牧兽医, 2013, 40(2): 62-66. |
| [48] |
Guo Y M. Effects of dietary energy levels on rumen nitrogen transportation and utilization in Tibetan sheep. Lanzhou: Lanzhou University, 2019. |
| [49] |
郭亚敏. 饲粮能量水平对藏羊瘤胃氮素转运及利用效率的影响. 兰州: 兰州大学, 2019. |
| [50] |
Dong J Q, Zhang H, Jiang X F, et al. Comparison of serum biochemical parameters between two broiler chicken lines divergently selected for abdominal fat content. Journal of Animal Science, 2015, 93(7): 3278-3286. |
| [51] |
Jo Y H, Kim W S, Peng D Q, et al. Effects of different energy levels and two levels of temperature-humidity indices on growth, blood metabolites, and stress biomarkers in Korean native calves. Journal of Thermal Biology, 2023, 117: 103703. |
| [52] |
Xu X, Hu J, Xue H, et al. Applications of human and bovine serum albumins in biomedical engineering: A review. International Journal of Biological Macromolecules, 2023, 253(30): 126914. |
| [53] |
Wang Q, Wang Y, Hussain T, et al. Effects of dietary energy level on growth performance, blood parameters and meat quality in fattening male Hu lambs. Journal of Animal Physiology and Animal Nutrition, 2020, 104(2): 418-430. |
| [54] |
Zhang C, Yang Q, Wang Y P, et al. Effects of dietary energy level on growth performance, nutrient digestibility and serum biochemical indices of Dezhou donkeys. Chinese Journal of Animal Nutrition, 2022, 34(2): 1158-1164. |
| [55] |
张晨, 杨泉, 王云鹏, 饲粮能量水平对德州驴生长性能、营养物质消化率及血清生化指标的影响. 动物营养学报, 2022, 34(2): 1158-1164. |
| [56] |
Pal K, Patra A K, Sahoo A, et al. Effects of nitrate and fumarate in tree leaves-based diets on nutrient utilization, rumen fermentation, microbial protein supply and blood profiles in sheep. Livestock Science, 2015, 172(2): 5-15. |
| [57] |
Huang W Q, Qi M L, Lv X K, et al. Effects of dietary energy and protein levels on the growth, digestion performance and serum indexes of 21-60 days old Hu sheep lambs. Acta Veterinaria et Zootechnica Sinica, 2019, 50(1): 105-114. |
| [58] |
黄文琴, 祁敏丽, 吕小康, 饲粮能量和蛋白质水平对21~60日龄湖羊生长、消化性能及血清指标的影响. 畜牧兽医学报, 2019, 50(1): 105-114. |
| [59] |
Wu H Z, Peng Z L, Gao Y H, et al. Effect of supplementary concentrate on growth performance, apparent nutrient digestibility and serum biochemical indices of grazing yaks in cold season. China Feed, 2020(7): 55-60. |
| [60] |
吴华卓, 彭忠利, 高彦华, 冷季补饲精料对放牧牦牛生长性能、养分消化率和血清生化指标的影响. 中国饲料, 2020(7): 55-60. |
| [61] |
Herbert K E, Erridge C. Regulation of low-density lipoprotein cholesterol by intestinal inflammation and the acute phase response. Cardiovascular Research, 2018, 114(2): 226-232. |
| [62] |
Zhang H, Zhang X, Wang Z S, et al. Effects of dietary energy level on lipid metabolism-related gene expression in subcutaneous adipose tissue of Yellow breed×Simmental cattle. Animal Science Journal, 2015, 86(4): 392-400. |
| [63] |
Ren J G, Guan P, Huang J Z, et al. Effects of dietary energy level on growth-fattening performance and serum biochemical indices of Angus bulls. China Animal Husbandry and Veterinary Medicine, 2023, 50(3): 966-976. |
| [64] |
任建刚, 关鹏, 黄建智, 饲粮能量水平对安格斯公牛育肥性能及血清生化指标的影响. 中国畜牧兽医, 2023, 50(3): 966-976. |
| [65] |
Lasa A, Simón E, Churruca I, et al. Adiposity and serum parameters in hamsters fed energy restricted diets supplemented or not with trans-10, cis-12 conjugated linoleic acid. Journal of Physiology and Biochemistry, 2007, 63(4): 297-304. |
| [66] |
Chelikani P K, Ambrose D J, Keisler D H, et al. Effects of dietary energy and protein density on plasma concentrations of leptin and metabolic hormones in dairy heifers. Journal of Dairy Science, 2009, 92(4): 1430-1441. |
| [67] |
Uyeda K, Repa J J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metabolism, 2006, 4(2): 107-110. |
| [68] |
Wang Y, Wang Q, Dai C, et al. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Animal Nutrition, 2020, 6(4): 499-506. |
| [69] |
Shi H B, Wang Y Q, He W T, et al. The determination of growth performance, wool quality and blood physiological and biochemical indexes of SDH hybrid sheep. China Animal Husbandry and Veterinary Medicine, 2019, 46(2): 404-413. |
| [70] |
施会彬, 王玉琴, 何翁潭, 萨杜湖杂交羊生长性能、羊毛品质及血液生理生化指标测定. 中国畜牧兽医, 2019, 46(2): 404-413. |
| [71] |
Dai D W, Wang S X, Wang X, et al. Effects of different concentrate supplementation levels on growth performance, blood markers, and economic return of yaks grazing in the warm season. Pratacultural Science, 2020, 37(11): 2359-2365. |
| [72] |
戴东文, 王书祥, 王迅, 精料补饲水平对暖季放牧牦牛生长性能、血清生化指标及养殖收益的影响. 草业科学, 2020, 37(11): 2359-2365. |
| [73] |
Molina E, Gonzalez-Redondo P, Moreno-Rojas R, et al. Evaluation of haematological, serum biochemical and histopathological parameters of growing rabbits fed Amaranthus dubius. Journal of Animal Physiology and Animal Nutrition, 2018, 102(2): e525-e533. |
| [74] |
Hosseinian S A, Hasanzadeh F. Impact of high dietary energy on obesity and oxidative stress in domestic pigeons. Veterinary Medicine and Science, 2021, 7(4): 1391-1399. |
| [75] |
Zou M, Lin H Q, Deng H C, et al. Determination and analysis of blood physiological and biochemical indexes and immunoglobulin G in Guizhou white goats. Veterinary Orientation, 2021(11): 121-123. |
| [76] |
邹明, 林汉卿, 邓华成, 贵州白山羊血液生理生化指标及免疫球蛋白G测定与分析. 兽医导刊, 2021(11): 121-123. |
| [77] |
Barszcz M, Taciak M, Tusino A, et al. The effect of organic and inorganic zinc source, used in combination with potato fiber, on growth, nutrient digestibility and biochemical blood profile in growing pigs. Livestock Science, 2019, 227(9): 37-43. |
| [78] |
Wang Y T, Wang Q F, Wang Y F, et al. Statistical optimization for the production of recombinant cold-adapted superoxide dismutase in E. coli using response surface methodology. Bioengineered, 2017, 8(6): 693-699. |
| [79] |
Lubos E, Loscalzo J, Handy D E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxidants and Redox Signaling, 2011, 15(7): 1957-1997. |
| [80] |
Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 2017, 524(9): 13-30. |
| [81] |
Zhang Z Q, Zhou C, Fan K P, et al. Metabolomics analysis of the effects of temperature on the growth and development of juvenile European seabass (Dicentrarchus labrax). The Science of the Total Environment, 2021, 769(20): 145155. |
| [82] |
Ndrepepa G. Uric acid and cardiovascular disease. Clinica Chimica Acta, 2018, 484(9): 150-163. |
| [83] |
Luo X, Nie Q X, Jiang C T. The role of gut microbiota and bile acids in metabolic diseases. Progress in Physiological Sciences, 2022, 53(6): 409-415. |
| [84] |
罗茜, 聂启兴, 姜长涛. 肠道菌群及胆汁酸在代谢性疾病的作用. 生理科学进展, 2022, 53(6): 409-415. |
| [85] |
Zhang J J, Chen X S, Qu L T, et al. Effect of bile acids in high-lipid diet on growth performance and muscle fatty acid composition of gibel carp (Carassius auratus gibelio). Feed Research, 2023, 46(14): 41-45. |
| [86] |
张晶晶, 陈祥顺, 曲乐天, 高脂饲料中添加胆汁酸对异育银鲫生长及肌肉脂肪酸组成的影响. 饲料研究, 2023, 46(14): 41-45. |
| [87] |
Zhang Y, Feng H, Liang X F, et al. Dietary bile acids reduce liver lipid deposition via activating farnesoid X receptor, and improve gut health by regulating gut microbiota in Chinese perch (Siniperca chuatsi). Fish and Shellfish Immunology, 2022, 121(2): 265-275. |
| [88] |
Agenas S, Heath M F, Nixon R M, et al. Indicators of undernutrition in cattle. Animal Welfare, 2006, 15(2): 149-160. |
| [89] |
Zhong G, Chen K, Lin W C, et al. Effects of different dietary energy levels on growth performance, blood biochemical indexes and antioxidant power of Xiangnan yellow cattle. Chinese Journal of Animal Science, 2021, 57(8): 219-223. |
| [90] |
钟港, 陈坤, 林文超, 不同日粮能量水平对湘南黄牛生长性能、血液生化指标及抗氧化力的影响. 中国畜牧杂志, 2021, 57(8): 219-223. |
| [91] |
Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology, 2004, 25(1): 4-7. |
| [92] |
Atko D, Vaková J, Perjési P, et al. Pro-oxidative and antioxidant effects of salicylates. Chemical Papers, 2020, 74(9): 3161-3168. |
| [93] |
Li X P, Tan Z L, Li Z C, et al. Metabolomic changes in the liver tissues of cows in early lactation supplemented with dietary rumen-protected glucose during the transition period. Animal Feed Science and Technology, 2021, 281(11): 115093. |
| [94] |
Meesapyodsuk D, Sun K W, Zhou R, et al. Stepwise metabolic engineering of docosatrienoic acid-an ω-3 very long-chain polyunsaturated fatty acid with potential health benefits in Brassica carinata. Plant Biotechnology Journal, 2023, 21(1): 8. |
| [95] |
Wang T, Fu X, Chen Q, et al. Arachidonic acid metabolism and kidney inflammation. International Journal of Molecular Sciences, 2019, 20(15): 3683. |
| [96] |
Xu Q, Wang X, Liu Y, et al. Parental dietary arachidonic acid altered serum fatty acid profile, hepatic antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Animal Science Journal, 2021, 92(1): e13616. |
| [97] |
Wen B, Gao Q, Dong S, et al. Effects of different feed ingredients on growth, fatty acid profiles, lipid peroxidation and aminotransferases activities of sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 2016, 454(5): 176-183. |
| [98] |
Zhang X, Han L J, Hou S Z, et al. Metabolomics approach reveals high energy diet improves the quality and enhances the flavor of black Tibetan sheep meat by altering the composition of rumen microbiota. Frontiers in Nutrition, 2022, 9: 915558. |
| [99] |
Liao X, Zheng S J, Lu K K, et al. Plant polyphenols exert antioxidant activity of by Nrf2/ARE signaling pathway: a review. Food Science, 2016, 37(7): 227-232. |
| [100] |
廖霞, 郑少杰, 卢可可, 植物多酚通过Nrf2/ARE信号通路抗氧化作用研究进展. 食品科学, 2016, 37(7): 227-232. |
宁夏回族自治区农业高质量发展和生态保护科技创新示范课题(NGSB-2021-15-05)
宁夏重点研发计划项目(2023BCF01037)
/
| 〈 |
|
〉 |