不同施肥量和播种量对高寒矿区植被恢复和土壤质量的影响及综合评价
刘文谨 , 蒋福祯 , 祁凯斌 , 宋明丹 , 李正鹏
草业学报 ›› 2025, Vol. 34 ›› Issue (05) : 27 -39.
不同施肥量和播种量对高寒矿区植被恢复和土壤质量的影响及综合评价
Effects of different fertilization and sowing amounts on vegetation restoration and soil quality in alpine mining areas and comprehensive evaluation
木里煤矿区地处高寒地带,经多年开采后生态破坏严重,土壤贫瘠,导致生态恢复困难且恢复成本较高。因此,筛选出一套高效率、低成本的生态恢复方案尤为重要。试验依托于青海省大面积的恢复方案设计了不同施肥量和播种量组合的两因素三水平完全组合试验,施肥量设3个水平,分别为低施肥F1(羊板粪165 m3·hm-2+有机肥7.5 t·hm-2+牧草专用肥75 kg·hm-2)、中施肥F2(羊板粪330 m3·hm-2+有机肥15 t·hm-2+牧草专用肥150 kg·hm-2)、高施肥F3(羊板粪495 m3·hm-2+有机肥22.5 t·hm-2+牧草专用肥225 kg·hm-2);播种量设3个水平,分别为低播量S1(60 kg·hm-2)、中播量S2(120 kg·hm-2)、高播量S3(180 kg·hm-2),共构建了9种恢复处理,分别为低施肥低播量(F1S1)、低施肥中播量(F1S2)、低施肥高播量(F1S3)、中施肥低播量(F2S1)、中施肥中播量(F2S2)、中施肥高播量(F2S3)、高施肥低播量(F3S1)、高施肥中播量(F3S2)、高施肥高播量(F3S3)。本研究主要通过探究不同恢复处理下矿区植被生长状况及土壤质量变化,结合灰色关联度分析和熵权TOPSIS方法,对不同恢复方案的综合效果进行全面评价。结果显示,施肥量与播种量的恢复处理显著促进了矿区的植被恢复(P<0.05),中高施肥处理下植被盖度超过70%,植被密度达到8826~10447株·m-2,地上生物量显著增加至445.51~559.47 g·m-2。不同恢复处理显著改善了土壤物理特性(P<0.05),中高施肥处理下土壤容重平均降至0.94 g·cm-3,随施肥量的增加,自然含水量显著增加,在高施肥中播量(F3S2)和中施肥高播量(F2S3)处理达到39.31%和38.28%。高播种量处理下,土壤饱和持水量与毛管持水量显著提升(P<0.05),在高施肥高播量(F3S3)处理下最高分别为91.14%和81.39%。土壤养分特性方面,中高施肥处理有机质平均增加26.23%,pH值平均降至7.5,呈中性偏碱。且随着施肥量的增加氮、磷、钾等关键养分显著提升(P<0.05)。选取测定的植物和土壤指标进行灰色关联度和熵权TOPSIS分析,结果显示,中施肥高播量(F2S3)的恢复方案在生态效益和经济效益上具有双重优势。综上所述,本研究认为中施肥高播量(F2S3),即采用羊板粪330 m3·hm-2、有机肥15 t·hm-2、牧草专用肥150 kg·hm-2以及播种量180 kg·hm-2的恢复方案可作为青海省木里矿区生态恢复的优先参考方案。
The Muli coal mining area is located in the hinterland of the Qilian Mountains on the Qinghai-Tibet Plateau. After years of mining activity, excessive open-pit mining activities have encroached on swampy wetlands and a large amount of waste residue from mining has been landfilled. Soil affected by mining activity is infertile, which leads to difficulties in environmental restoration and high restoration costs. Therefore, it is crucial to conduct experiments to identify an efficient and low-cost ecological restoration plan. The experiment conducted forms part of a large-scale restoration program in Qinghai Province and comprised two-factors (fertilization and seeding rates), and three-levels of each. Specifically, the fertilization rates were: low fertilization, F1 (sheep manure 165 m3·ha-1+organic fertilizer 7.5 t·ha-1+forage special fertilizer 75 kg·ha-1); medium fertilization, F2 (sheep manure 330 m3·ha-1+organic fertilizer 15 t·ha-1+forage special fertilizer 150 kg·ha-1); and high fertilization, F3 (sheep manure 495 m3·ha-1+organic fertilizer 22.5 t·ha-1+forage special fertilizer 225 kg·ha-1). The three seeding rates were: low seeding rate, S1 (60 kg·ha-1); medium seeding rate, S2 (120 kg·ha-1); and high seeding rate, S3 (180 kg·ha-1). A total of nine restoration treatments were formed from the combinations of the three levels of fertilization and seeding rate, namely: low fertilization and low seeding rate (F1S1), low fertilization and medium seeding rate (F1S2), low fertilization and high seeding rate (F1S3), medium fertilization and low seeding rate (F2S1), medium fertilization and medium seeding rate (F2S2), medium fertilization and high seeding rate (F2S3), high fertilization and low seeding rate (F3S1), high fertilization and medium seeding rate (F3S2), and high fertilization and high seeding rate (F3S3). This experiment design therefore comprehensively evaluated the overall effectiveness of different restoration programs by exploring vegetation growth and soil quality changes in mining areas under various restoration treatments. Data were analyzed using grey relational analysis and the entropy weight TOPSIS method. The study results indicate that applying fertilizer and adjusting seeding rates significantly enhances vegetation restoration in the mining area (P<0.05). With medium and high fertilization treatments, vegetation cover exceeded 70%, vegetation density reached 8826-10447 plants·m-2, and aboveground biomass significantly increased to 445.51-559.47 g·m-2. Some restoration treatments also improved soil physical properties significantly (P<0.05). With medium and high fertilization treatments, soil bulk density averaged 0.94 g·cm-3. Moreover, increased fertilizer application led to a significant increase in soil moisture content, which reached 39.31% and 38.28% under F3S2 and F2S3, respectively. Soil saturated capacity and capillary water holding capacity also increased significantly (P<0.05) under high seeding rate treatments, with the highest values of 91.14% and 81.39%, respectively, under the F3S3 treatment. In terms of soil nutrient characteristics, medium and high fertilization treatments increased organic matter by an average of 26.23%, and the pH value averaged 7.5, indicating a slightly alkaline soil. Additionally, essential nutrients such as nitrogen, phosphorus, and potassium increased significantly with increasing fertilization (P<0.05). Through measured plant and soil indicators, grey relational analysis, and entropy weight TOPSIS analysis, it is evident that the restoration program with medium fertilization and high seeding rate (F2S3) offers dual advantages in both ecological and economic benefits. In conclusion, this study finds that 330 m3·ha-1 sheep manure, 15 t·ha-1 organic fertilizer, 150 kg·ha-1 specialized forage fertilizer, and a seeding rate of 180 kg·ha-1 in the Muli mining area of Qinghai Province can be recommended as the optimal combination for ecological restoration.
生态修复 / 植被生长 / 土壤养分特征 / 熵权TOPSIS分析 / 灰色关联度分析
ecological restoration / vegetation growth / soil nutrient characteristics / entropy weight TOPSIS analysis / grey relational degree analysis
| [1] |
Li J, Sheng Y, Chen J, et al. Modeling the distribution of permafrost along a transportation corridor from Cetar to Muri in Qinghai province. Progress in Geography, 2010, 29(9): 1100-1106. |
| [2] |
李静, 盛煜, 陈继, 青海省柴达尔-木里地区道路沿线多年冻土分布模拟. 地理科学进展, 2010, 29(9): 1100-1106. |
| [3] |
Jin L Q, Li X L, Sun H F, et al. Effects of restoration years on vegetation and soil characteristics under different artificial measures in alpine mining areas, west China. Sustainability, 2022, 14(17): 10889. |
| [4] |
Yang X G, Li X L, Jin L Q, et al. Changes in soil properties of coal mine spoils in an alpine coal mining area after short-term restoration. Acta Prataculturae Sinica, 2018, 27(8): 30-38. |
| [5] |
杨鑫光, 李希来, 金立群, 短期恢复下高寒矿区煤矸石山土壤变化特征研究. 草业学报, 2018, 27(8): 30-38. |
| [6] |
Wang Q W, Xing X F, Zou M J, et al. Application of ecological geological layer theory in coal seam protection and ecological restoration-An example of ecological management practice in plateau alpine mining areas. Coal Geology & Exploration, 2023, 51(4): 104-109. |
| [7] |
王庆伟, 邢夏帆, 邹明俊, 生态地质层理论在煤层保护和生态修复中的应用—以高原高寒矿区生态治理实践为例. 煤田地质与勘探, 2023, 51(4): 104-109. |
| [8] |
Qin Y, Liu J S, Xie S X, et al. Reflections on cost control of ecological restoration in plateau and alpine coal mining areas. China Plant Engineering, 2023(18): 5-7. |
| [9] |
覃韵, 刘金森, 谢色新, 高原高寒煤矿区生态修复成本控制的思考. 中国设备工程, 2023(18): 5-7. |
| [10] |
Pang B L. Analysis on soil microbe, enzyme activity and its influencing factors under different vegetation type in coal waste pile. Taiyuan: Shanxi Normal University, 2018. |
| [11] |
庞碧琳. 不同复垦植被类型煤矸山土壤微生物、酶活性及其影响因素. 太原: 山西师范大学, 2018. |
| [12] |
Xi B, Zhai L M, Liu S, et al. Effects of combination of organic and inorganic fertilization on maize yield and soil nitrogen and phosphorus leaching. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 326-335. |
| [13] |
习斌, 翟丽梅, 刘申, 有机无机肥配施对玉米产量及土壤氮磷淋溶的影响. 植物营养与肥料学报, 2015, 21(2): 326-335. |
| [14] |
Yang X Y. Experimental study on soil fertility of green and fertilizer rape in Ningxia Yellow River Irrigation District. Yinchuan: Ningxia University, 2019. |
| [15] |
杨旭燕. 宁夏引黄灌区绿肥油菜培肥土壤试验研究. 银川: 宁夏大学, 2019. |
| [16] |
Tang G, Hu L, Song X Y, et al. Response of plant roots in different diameter classes to changing precipitation in an alpine meadow. Acta Ecologica Sinica, 2022, 42(15): 6250-6264. |
| [17] |
唐国, 胡雷, 宋小艳, 高寒草甸植物群落不同根序根系特征对降雨量变化的响应. 生态学报, 2022, 42(15): 6250-6264. |
| [18] |
Yang X G, Li X L, Jin L Q, et al. Effectiveness of different artificial restoration measures for soil and vegetation recovery on coal mine tailings in an alpine area. Acta Prataculturae Sinica, 2019, 28(3): 1-11. |
| [19] |
杨鑫光, 李希来, 金立群, 不同人工恢复措施下高寒矿区煤矸石山植被和土壤恢复效果研究. 草业学报, 2019, 28(3): 1-11. |
| [20] |
Li X Q, Li D Y, Lu Q J, et al. Effects of different organic fertilizers on sweet potato growth and rhizosphere soil properties in newly reclaimed land. Agronomy, 2022, 12(7): 1649. |
| [21] |
Liu S, Xiong T, Sun H, et al. Study on plateau frigid zone Muri mining area ecological management soil reconfiguration effect. Coal Geology of China, 2021, 33(11): 77-80, 86. |
| [22] |
刘帅, 熊涛, 孙浩, 高原高寒木里矿区生态治理中土壤重构治理效果研究. 中国煤炭地质, 2021, 33(11): 77-80, 86. |
| [23] |
Zhang Y F, Xu Y X, Tang J W, et al. Effects of sowing, fertilization and non-woven covering on vegetation restoration and soil temperature and humidity in alpine coalmine area. Qinghai Prataculture, 2022, 31(2): 2-6. |
| [24] |
张玉芳, 徐有学, 唐俊伟, 播量和施肥及无纺布覆盖对高寒矿区植被恢复和土壤温湿度的影响. 青海草业, 2022, 31(2): 2-6. |
| [25] |
Liu W J, Jiang F Z, Ma L L, et al. Effects of application amount of organic fertilizer and sowing methods on plant community growth and soil nutrients in alpine mining areas. Grassland and Turf, 2023, 43(2): 116-125. |
| [26] |
刘万杰, 蒋福祯, 马利利, 有机肥施用量和播种方式对高寒矿区植物群落生长和土壤养分的影响. 草原与草坪, 2023, 43(2): 116-125. |
| [27] |
Wang T, Cai X L, Li F, et al. Soil layer construction and composition changes in restoration of ecological and geological layer in alpine mining area on plateau. Journal of China Coal Society, 2022, 47(6): 2407-2419. |
| [28] |
王佟, 蔡杏兰, 李飞, 高原高寒矿区生态地质层修复中的土壤层构建与成分变化差异. 煤炭学报, 2022, 47(6): 2407-2419. |
| [29] |
Li Y H, Li X L, Tang J W, et al. Study on “Seven-step” grass planting technology for ecological rehabilitation of frigid zone Muri mining area in Qinghai. Coal Geology of China, 2021, 33(7): 57-60. |
| [30] |
李永红, 李希来, 唐俊伟, 青海木里高寒矿区生态修复“七步法”种草技术研究. 中国煤炭地质, 2021, 33(7): 57-60. |
| [31] |
Qiao Q L, Wu Y R, Li Q Y, et al. The effects of commercial organic fertilizer and semi decomposed sheep manure on artificial grassland and soil characteristics in alpine mining area. Acta Agrestia Sinica, 2024, 32(8): 2659-2669. |
| [32] |
乔千洛, 武燕茹, 李钦瑶, 商品有机肥和羊板粪对高寒矿区人工草地和土壤特性的影响. 草地学报, 2024, 32(8): 2659-2669. |
| [33] |
Zi H B, Ade L J, Ma L, et al. Change of ratio of root to soil and soil nutrient content at different grassland types in alpine meadow. Southwest China Journal of Agricultural Sciences, 2016, 29(12): 2916-2921. |
| [34] |
字洪标, 阿的鲁骥, 马力, 高寒草甸不同类型草地群落根土比、土壤养分变化. 西南农业学报, 2016, 29(12): 2916-2921. |
| [35] |
Li J, Du Y G, Zhang F W, et al. Mattic epipedon impact on water conservation in alpine meadow. Acta Agrestia Sinica, 2012, 20(5): 836-841. |
| [36] |
李婧, 杜岩功, 张法伟, 草毡表层演化对高寒草甸水源涵养功能的影响. 草地学报, 2012, 20(5): 836-841. |
| [37] |
Bao S D. Agrochemical analysis of soil. Beijing: China Agriculture Press, 2000. |
| [38] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. |
| [39] |
Guo X Y. Application of grey relational analysis in regional competitiveness evaluation. Statistics & Decision, 2004(11): 55-56. |
| [40] |
郭秀云. 灰色关联法在区域竞争力评价中的应用. 统计与决策, 2004(11): 55-56. |
| [41] |
Chen W, Xia J H. An optimal weights combination method considering both subjective and objective weight information. Mathematics in Practice and Theory, 2007, 37(1): 17-22. |
| [42] |
陈伟, 夏建华. 综合主、客观权重信息的最优组合赋权方法. 数学的实践与认识, 2007, 37(1): 17-22. |
| [43] |
Zhang L, Lu Z H, Tang S Y, et al. Slope vegetation characteristics and community stability at different restoration years of open-pit coal mine waste dump. Acta Ecologica Sinica, 2021, 41(14): 5764-5774. |
| [44] |
张琳, 陆兆华, 唐思易, 露天煤矿排土场边坡植被组成特征及其群落稳定性评价. 生态学报, 2021, 41(14): 5764-5774. |
| [45] |
Li S W, Wang B, Liu J, et al. Analysis of community characteristics and stability during ecological restoration in mining area of alpine steppe. Journal of Agricultural Science and Technology. (2024-10-05)[2024-07-01]. https://doi.org/10.13304/j.nykjdb.2023.0196. |
| [46] |
李诗文, 王博, 刘静, 高寒草原矿区生态修复过程中植物多样性及群落稳定性分析. 中国农业科技导报. (2024-10-05)[2024-07-01]. https://doi.org/10.13304/j.nykjdb.2023.0196. |
| [47] |
Zhang W, Zhou Q P, Chen Y J, et al. Comparison of production performance and forage quality of ten introduced oat varieties in Hulunbuir, China. Acta Prataculturae Sinica, 2021, 30(12): 129-142. |
| [48] |
张伟, 周青平, 陈有军, 呼伦贝尔地区10个引进燕麦品种生产性能及饲草品质比较. 草业学报, 2021, 30(12): 129-142. |
| [49] |
Ou K W, Nong Z M, Lu Y F, et al. Evaluation of sugarcane based on comprehensive characters using grey correlation degree and TOPSlS method. Guangxi Sciences, 2023, 30(4): 804-812. |
| [50] |
欧克纬, 农泽梅, 卢业飞, 基于灰色关联度及TOPSIS法的甘蔗综合性状评价. 广西科学, 2023, 30(4): 804-812. |
| [51] |
Han W Y, Chen L, Su X K, et al. Effects of soil physico-chemical properties on plant species diversity along an elevation gradient over alpine grassland on the Qinghai-Tibetan Plateau. Frontiers in Plant Science, 2022, 13: 822268. |
| [52] |
Chen H Y H, Biswas S R, Sobey T M, et al. Reclamation strategies for mined forest soils and overstorey drive understorey vegetation. Journal of Applied Ecology, 2018, 55(2): 926-936. |
| [53] |
Muhammad I, Yang L, Ahmad S, et al. Irrigation and nitrogen fertilization alter soil bacterial communities, soil enzyme activities, and nutrient availability in maize crop. Frontiers in Microbiology, 2022, 13: 833758. |
| [54] |
Jing M L, Li J Y, Yang Z Z, et al. Response of seeding mode and sowing density to plant component characters in the early stage establishment of Poa pratensis L. ‘Qinghai’. Acta Agrestia Sinica, 2023, 31(5): 1556-1563. |
| [55] |
景美玲, 李积雅, 杨增增, 播种方式和密度对青海草地早熟禾建植初期植株的影响. 草地学报, 2023, 31(5): 1556-1563. |
| [56] |
Wu Y W. Study on characteristics of soil seed bank and influence factors of germination in waste land of Xiangtan manganese mine. Changsha: Central South University of Forestry and Technology, 2019. |
| [57] |
吴耀文. 湘潭锰矿废弃地土壤种子库特征及萌发影响因素的研究. 长沙: 中南林业科技大学, 2019. |
| [58] |
Li F M, Ren L H, Liu J K, et al. Analysis of soil erosion forms and nutrient status of tailings from Liaoning iron ore. Technology of Soil and Water Conservation, 2017(5): 37-40. |
| [59] |
李凤鸣, 任丽华, 柳金库, 辽宁铁矿尾矿砂水土流失形式与养分状况分析. 水土保持应用技术, 2017(5): 37-40. |
| [60] |
Li W H, Gan Z Z B, Cao X J, et al. Effects of altitude on plant productivity and species diversity in alpine meadows of northern Tibet. Acta Prataculturae Sinica, 2017, 26(9): 200-207. |
| [61] |
栗文瀚, 干珠扎布, 曹旭娟, 海拔梯度对藏北高寒草地生产力和物种多样性的影响. 草业学报, 2017, 26(9): 200-207. |
| [62] |
Jung K H, Duan M, House J, et al. Textural interfaces affected the distribution of roots, water, and nutrients in some reconstructed forest soils in the Athabasca oil sands region. Ecological Engineering, 2014, 64: 240-249. |
| [63] |
Liu F, Wang P P, Cao Y Y, et al. Root distribution characteristics of typical herbaceous plants and their effects on soil physicochemical properties on the Loess Plateau. Acta Prataculturae Sinica, 2024, 33(10): 1-13. |
| [64] |
刘芳, 王佩佩, 曹玉莹, 黄土高原典型草本植物根系分布特征及其对土壤理化性质的影响研究. 草业学报, 2024, 33(10): 1-13. |
| [65] |
Nan W G, Jiao L, Wang H, et al. Ecological restoration effect of artificial grassland and turf transplantation in alpine mining area on plateau. Pratacultural Science, 2023, 40(12): 3018-3029. |
| [66] |
南维鸽, 焦磊, 王浩, 高寒矿区人工建植草地和自然草皮移植生态修复效应. 草业科学, 2023, 40(12): 3018-3029. |
| [67] |
Chen J, Guo N, Wang Y P, et al. The effect of organic fertilizer on the comprehensive fertility of newly reclaimed farmland soil and the annual yield of wheat and corn. Acta Agriculturae Boreali-Sinica. (2024-07-30)[2024-11-25]. http://kns.cnki.net/kcms/detail/13.1101.S.20240411.1507.002.html. |
| [68] |
陈娟, 郭宁, 王艳平, 有机肥对复垦新增耕地土壤综合肥力及麦玉周年产量的影响. 华北农学报. (2024-07-30)[2024-11-25]. http://kns.cnki.net/kcms/detail/13.1101.S.20240411.1507.002.html. |
| [69] |
Leatherdale J, Chanasyk D S, Quideau S. Soil water regimes of reclaimed upland slopes in the oil sands region of Alberta. Canadian Journal of Soil Science, 2012, 92(1): 117-129. |
| [70] |
Wu H Y, Du L T, Qiao C L, et al. Water consumption of ecosystem driven by evapotranspiration evolution in Ningxia oasis plain. Journal of Soil and Water Conservation, 2023, 37(3): 172-180, 189. |
| [71] |
吴宏玥, 杜灵通, 乔成龙, 基于蒸散演变驱动的宁夏绿洲平原生态系统耗水变化. 水土保持学报, 2023, 37(3): 172-180, 189. |
| [72] |
Sun T J, Nie M H, Teng W J, et al. Effects of different grasses for ecological restoration on soil evapotranspiration. Northern Horticulture, 2024(3): 71-78. |
| [73] |
孙铁军, 聂明鹤, 滕文军, 不同生态修复草种对土壤水分蒸散的影响. 北方园艺, 2024(3): 71-78. |
| [74] |
Li J F, Qu M K, Huang B, et al. Spatially non-stationary relationships between cation exchange capacity and related control factors. Acta Pedologica Sinica, 2017, 54(3): 638-646. |
| [75] |
李锦芬, 瞿明凯, 黄标, 区域土壤CEC与相关控制因子的空间非平稳关系评估. 土壤学报, 2017, 54(3): 638-646. |
| [76] |
Ma Y F, Song Y T, Wu Y N, et al. Effects of fertilization and mowing for 5 years on soil microbial characteristics in Hulunbuir meadow steppe. Acta Prataculturae Sinica, 2024, 33(9): 242-251. |
| [77] |
马远飞, 宋彦涛, 乌云娜, 施肥和刈割5年对呼伦贝尔草甸草原土壤微生物特征的影响. 草业学报, 2024, 33(9): 242-251. |
| [78] |
Ma L M, Hu L G, Yin H L. Construction of geological environment quality evaluation system Tangshan open-pit coal mine. China Energy and Environmental Protection, 2023, 45(4): 49-54. |
| [79] |
马立明, 胡立国, 殷红亮. 唐山露天煤矿集中区地质环境质量评价体系构建. 能源与环保, 2023, 45(4): 49-54. |
| [80] |
Liu Z, Han L, Wang D Y, et al. Soil physicochemical properties and quality assessment in the coal mining area of Loess Plateau in Northern Shaanxi Province. Journal of China Coal Society, 2021, 46(5): 1555-1564. |
| [81] |
刘钊, 韩磊, 王丹月, 陕北黄土高原煤矿区土壤理化性质及质量评价. 煤炭学报, 2021, 46(5): 1555-1564. |
国家重点研发计划项目(2021YFC3201605)
青海省自然科学基金青年项目(2023-ZJ-987Q)
/
| 〈 |
|
〉 |