扇穗茅全长转录组SSR特征分析及分子标记开发
Analysis of SSR characterization in full-length transcriptome and development of SSR molecular markers for Littledalea racemosa
扇穗茅是青藏高原特有的一种具有重要生态和经济价值的禾本科草本植物,开发稳定高效的微卫星(SSR)分子标记可为其遗传多样性、系统发育和物种分布格局等研究提供重要的技术手段。本研究基于Pacbio测序平台获得扇穗茅全长转录组30624条Unigene序列,利用MISA软件搜索到14089个SSR重复序列,SSR发生频率为33.85%;通过对SSR位点特征分析发现,SSR位点包含6种核苷酸重复类型,其中单、二、三核苷酸占所有核苷酸类型的97.35%,为主要重复类型;3种主导基序类型中,三核苷酸所形成的基元类型数目最多,共检测到10个基元类型,其中CCG/CGG基元类型占优,共形成1736个SSR位点,占三核苷酸总SSR位点的31.32%;随机挑选12个不同居群的扇穗茅样本对合成的160对引物进行PCR扩增和琼脂糖凝胶电泳检测,最终获得扩增稳定、具特异性的15对SSR引物。基于扇穗茅27个居群、81个个体,对15对SSR引物多态性进行了分析,共扩增出132个观测等位基因,平均每对引物扩增出8.8个观测等位基因,有效等位基因数(Ne)、Shannon’s信息指数(I)、多态性信息含量(PIC)、观测杂合度(Ho)、期望杂合度(He)平均值分别为4.7799、1.6959、0.7270、0.8575和0.7648。基于Nei’s遗传距离利用UPGMA方法进行聚类分析,结果表明,扇穗茅居群间和居群内个体间存在明显的系统亲缘关系,不同居群间遗传距离可能和地理距离相关。本研究开发的15对SSR引物遗传多样性丰富,可为扇穗茅种质资源遗传变异研究提供更加有效的标记选择。
Littledalea racemosa is a herb with significant ecological and economic value belonging to the Poaceae family and endemic to Qinghai-Xizang Plateau. Identification of a suitable set of simple sequence repeat (SSR) molecular markers offers an important technical means for studying genetic diversity, phylogenetics, and species distribution patterns. In this study, 14089 SSR sequences were obtained using MISA software from 30624 Unigene sequences derived from the L. racemosa full-length transcriptome with the Pacbio sequencing platform. The value of incidence of SSR was 33.85%. Analysis of SSR characteristics, indicated six types of SSR locus nucleotide repeats, with mono-nucleotide, di-nucleotide, and tri-nucleotide being the dominant repeat motifs and accounting for 97.35% of all nucleotide types. Among these three dominant motif types, tri-nucleotide SSRs were the most frequently encountered, with a total of 10 detected. The CCG/CGG motif type was most common and occurred at a total of 1736 SSR sites, accounting for 31.32% of the total SSR tri-nucleotide sites. Twelve samples of L. racemosa were selected randomly from different populations and used by PCR amplification and agarose gel electrophoresis examination for 160 pairs of primers, and 15 pairs of SSR primers with stable amplification and specificity were finally obtained. For these 15 pairs of SSR primers, polymorphism of 81 individuals from 27 populations was analyzed, and a total of 132 alleles could be amplified, with an average of 8.8 alleles amplified per primer pair. The effective allele number (Ne), Shannon information index (I), polymorphic information content (PIC), observed heterozygosity (Ho), and expected heterozygosity (He), were 4.7799, 1.6959, 0.7270, 0.8575, and 0.7648, respectively. Cluster analysis was conducted using the UPGMA method based on Nei’s genetics distance, and the results showed that there were explicit genetic relationships among the populations and individuals within a population of L. racemosa. The genetic distance between different populations may be related to geographical distance. The 15 pairs of SSR primers developed in this study have rich genetic diversity, which can provide effective marker selection for genetic variation research in germplasm resourcesof L. racemosa.
Littledalea racemosa / transcriptome / SSR / molecular marker
| [1] |
Liu L, Guo B Z. Flora of China (Volume 9, Book 2). Beijing: Science Press, 2002: 377-380. |
| [2] |
刘亮, 郭本兆. 中国植物志(第九卷第二分册). 北京: 科学出版社, 2002: 377-380. |
| [3] |
Lyu T, Liu Y P, Zhou Y H, et al. Germplasm collection and taxonomic review of Littledalea (Poaceae) in the Qinghai-Tibet Plateau.Hubei Agricultural Sciences, 2018, 57(22): 11-13. |
| [4] |
吕婷, 刘玉萍, 周勇辉, 青藏高原扇穗茅属的分类现状及种质资源收集. 湖北农业科学, 2018, 57(22): 11-13. |
| [5] |
Hooker J D. Flora of British India. London: L.Reeve & Co, 1897: 2472-2473. |
| [6] |
Geng Y L. Illustration for main plants in China-Poaceae. Beijing: Science Press, 1959: 254-257. |
| [7] |
耿以礼. 中国主要植物图说-禾本科. 北京: 科学出版社, 1959: 254-257. |
| [8] |
Tzvelev N N. Planta Asiae centralium. Aedibus: Nauka, 1968: 173-174. |
| [9] |
Wu Z Y. Flora of Xizang (Volume 5). Beijing: Science Press, 1987: 138-139. |
| [10] |
吴征镒. 西藏植物志(第五卷). 北京: 科学出版社, 1987: 138-139. |
| [11] |
Lu S L. Littledalea, flora of Qinghai (Volume 4). Xining: Qinghai People’s Publishing House, 1999: 72-74. |
| [12] |
卢生莲. 扇穗茅属,青海植物志(第四卷). 西宁: 青海人民出版社, 1999: 72-74. |
| [13] |
Zhou Y H. Species delimitation of Littledalea (Poaceae), an endemic genus from the Qinghai-Tibet Plateau. Xining: Qinghai Normal University, 2017. |
| [14] |
周勇辉. 青藏高原特有属-扇穗茅属的物种界定研究. 西宁: 青海师范大学, 2017. |
| [15] |
Liu Y P, Lyu T, Zhu D, et al. Sequencing and alignment analysis of the complete chloroplast genome of Littledalea tibetica, an endemic species from the Qinghai-Tibet Plateau.Bulletin of Botanical Research, 2018, 38(4): 518-525. |
| [16] |
刘玉萍, 吕婷, 朱迪, 青藏高原特有种-藏扇穗茅叶绿体基因组测序及序列分析. 植物研究, 2018, 38(4): 518-525. |
| [17] |
Liu T, Liu Y P, Lyu T, et al. Potential distribution of Littledalea, an endemic genus from the Qinghai-Tibet Plateau, predicted by Biomod 2 models.Acta Agrestia Sinica, 2020, 28(6): 1650-1656. |
| [18] |
刘涛, 刘玉萍, 吕婷, 基于Biomod 2组合模型预测青藏高原特有属扇穗茅属物种的潜在分布. 草地学报, 2020, 28(6): 1650-1656. |
| [19] |
Yang P, Su X, Liu Y P, et al. Chromosome number and karyotype analysis from different populations of Littledalea racemosa. Acta Agrestia Sinica, 2022, 30(7): 1712-1720. |
| [20] |
杨萍, 苏旭, 刘玉萍, 扇穗茅不同居群染色体数目及核型分析. 草地学报, 2022, 30(7): 1712-1720. |
| [21] |
Kalia R K, Rar M K, Kalia S, et al. Microsatellite markers: An overview of the recent progress in plants. Euphytica, 2011, 177(3): 309-334. |
| [22] |
Gao T X, Cai Y L, Feng Y, et al. Genetic diversity and genetic structure of Prunus pseudocerasus populations from China as revealed by SSR markers. Acta Horticulturae Sinica, 2016, 43(6): 1148-1156. |
| [23] |
高天翔, 蔡宇良, 冯瑛, 中国樱桃14个自然居群遗传多样性和遗传结构的SSR评价. 园艺学报, 2016, 43(6): 1148-1156. |
| [24] |
Gao C C, Yan L P, Wu D J, et al. Analysis of the genetic diversity and population structure of Fraxinus spp. populations based on SSR markers. Journal of Central South University of Forestry & Technology, 2023, 43(6): 69-78. |
| [25] |
高铖铖, 燕丽萍, 吴德军, 基于SSR标记的白蜡群体遗传多样性和群体结构分析. 中南林业科技大学学报, 2023, 43(6): 69-78. |
| [26] |
Yan R J, Schnabel K E, Rowden A A, et al. Population structure and genetic connectivity of squat lobsters (Munida Leach, 1820) associated with vulnerable marine ecosystems in the southwest Pacific Ocean. Frontiers in Marine Science, 2020, 6: 791. |
| [27] |
Sun L J, He J J, Wang J, et al. Development of SSR markers based on full-length transcriptome sequencing and genetic diversity analysis of Halogeton glomeratus. Acta Prataculturae Sinica, 2022, 31(8): 199-210. |
| [28] |
孙禄娟, 何建军, 汪军, 基于全长转录组测序的盐生草SSR标记开发及其遗传多样性分析. 草业学报, 2022, 31(8): 199-210. |
| [29] |
Nie J R, Zhang W J, Zheng Y, et al. Advances in molecular markers and transcriptomics of Hemarthria compressa.Journal of Grassland and Forage Science, 2021(6): 1-8. |
| [30] |
聂嘉荣, 张文浚, 郑燕, 扁穗牛鞭草分子标记及转录组学研究进展. 草业与畜牧, 2021(6): 1-8. |
| [31] |
Gao J P, Wang D, Cao L Y, et al. Transcriptome sequencing of Codonopsis pilosula and identification of candidate genes involved in polysaccharide biosynthesis. PLoS One, 2015, 10(2): 117-134. |
| [32] |
Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1): 8-15. |
| [33] |
Peakall R, Smouse P E. GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012, 28(19): 2537-2539. |
| [34] |
Yeh F C, Yang R C, Boyle T, et al. POPGENE Version 1.32 Microsoft windows-based freeware for populations genetic analysis Version 1.31. Edmonton: University of Alberta, and Tim Boyle, Centre for International Forestry Research, 1999. |
| [35] |
Kalinowski S T, Taper M L, Marshall T C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 2007, 16(5): 1099-1106. |
| [36] |
Nei M F, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 1982, 19(2): 153-170. |
| [37] |
Zhang X Y, Zhang X L, Li N, et al. Development and application of genomic SSR markers in Rosa persica. Journal of Central South University of Forestry & Technology, 2024, 44(6): 186-194. |
| [38] |
张雪云, 张晓龙, 李娜, 单叶蔷薇基因组SSR标记开发与应用. 中南林业科技大学学报, 2024, 44(6): 186-194. |
| [39] |
Song Y, Zhang X R, He J X, et al. Genetic diversity analysis of Sophora flavescens Ait. germplasm resources based on cpSSR markers. Crops, 2023, 39(1): 30-37. |
| [40] |
宋芸, 张鑫瑞, 贺嘉欣, 基于叶绿体SSR分子标记的苦参种质资源遗传多样性分析. 作物杂志, 2023, 39(1): 30-37. |
| [41] |
Zhao Q J, Xie T, Hu Y Q, et al. Identification of Alpinia officinarum Hance cultivation types based on EST-SSR molecular markers. Molecular Plant Breeding, 2023, 21(2): 557-565. |
| [42] |
赵全杰, 谢腾, 胡雨晴, 基于EST-SSR分子标记技术的高良姜栽培类型的鉴别. 分子植物育种, 2023, 21(2): 557-565. |
| [43] |
Yin H, Li B, Zhang M Z, et al. Analysis of SSR sequence characteristics of Hordeum brevisubulatum transcriptome. Molecular Plant Breeding, 2021, 8: 1-9. |
| [44] |
尹航, 李冰, 张明智, 短芒大麦草转录组SSR序列特征分析. 分子植物育种, 2021, 8: 1-9. |
| [45] |
Zhu Y Q, Peng D D, Lin C W, et al. Development of SSR markers based on transcriptome sequence and analysis of genetic diversity in Sorghum sudanense. Acta Prataculturae Sinica, 2018, 27(5): 178-189. |
| [46] |
朱永群, 彭丹丹, 林超文, 苏丹草转录组SSR分子标记开发及遗传多样性评价. 草业学报, 2018, 27(5): 178-189. |
| [47] |
Mao X R, Liu Y P, Su X, et al. Characteristics analysis of simple sequence repeat (SSR) loci in Psammochloa villosa (Poaceae) based on transcriptome data.Acta Agrestia Sinica, 2022, 30(8): 1990-2001. |
| [48] |
毛轩睿, 刘玉萍, 苏旭, 沙鞭转录组简单重复序列(SSR)位点特征分析. 草地学报, 2022, 30(8): 1990-2001. |
| [49] |
Fu G, Liu Y P, Su X. Analysis of SSR characteristics for Elsholtzia densa Benth. based on transcriptome data. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(4): 654-663. |
| [50] |
富贵, 刘玉萍, 苏旭. 基于转录组数据的密花香薷SSR位点特征分析.西北植物学报, 2021, 41(4): 654-663. |
| [51] |
Yin Y, An W, Zhao J H, et al. SSR information in transcriptome and development of molecular markers in Lycium ruthenicum. Journal of Zhejiang A&F University, 2019, 36(2): 422-428. |
| [52] |
尹跃, 安巍, 赵建华, 黑果枸杞转录组SSR信息分析及分子标记开发. 浙江农林大学学报, 2019, 36(2): 422-428. |
| [53] |
Zhang T Y, Song L, Shen Q. EST-SSR distribution characteristics and markers development of Perilla frutescens. Guizhou Agricultural Sciences, 2017, 45(9): 114-118. |
| [54] |
张天缘, 宋莉, 沈奇. 紫苏EST-SSR分布特征及标记开发. 贵州农业科学, 2017, 45(9): 114-118. |
| [55] |
Liu X L, Zhang A L, Zhao Y, et al. SSR information analysis and primers selecting for Salvia yunnanensis. Lishizhen Medicine and Materia Medica Research, 2017, 28(9): 2224-2225. |
| [56] |
刘小莉, 张爱丽, 赵燕, 云南鼠尾草SSR位点信息分析和引物初筛. 时珍国医国药, 2017, 28(9): 2224-2225. |
| [57] |
Liu X Y, Wei Y K, Li G B. Development and characterization of microsatellite markers for the east Asia Salvia group using transcriptome sequencing. Molecular Plant Breeding, 2019, 17(22): 7445-7452. |
| [58] |
刘欣雨, 魏宇昆, 李桂彬. 丹参转录组的微卫星位点(SSR)特征及属内通用引物的开发. 分子植物育种, 2019, 17(22): 7445-7452. |
| [59] |
Haydar K, Crytsal M Y L, Wieland M. Survey of simple sequence repeats in completed fungal genomes. Molecular Biology&Evolution, 2005, 22(3): 639-649. |
| [60] |
Shen X B, Zhu Y J, Xu G B. Distribution characteristics of SSR loci and development of molecular markers in Taxus fauna. Journal of Central South University of Forestry & Technology, 2021, 41(4): 139-147. |
| [61] |
申响保, 朱妍洁, 徐刚标. 密叶红豆杉SSR位点分布特征及分子标记开发.中南林业科技大学学报, 2021, 41(4): 139-147. |
| [62] |
Zheng C Y. Development of SSR molecular markers and analyses of genetic diversity in Xanthopappus subacaulis (Asteraceae). Xining: Qinghai Normal University, 2023. |
| [63] |
郑长远. 黄缨菊SSR分子标记开发及遗传多样性研究. 西宁: 青海师范大学, 2023. |
| [64] |
Thiel T, Michalek W, Varshney R K, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2003, 106(3): 411-422. |
| [65] |
Kantety R V, LaRota M, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology, 2002, 48(5/6): 501-510. |
| [66] |
Sun J J, Zhou T, Zhang R T, et al. Comparative transcriptomes and development of expressed sequence tag-simple sequence repeat markers for two closely related oak species. Journal of Systematics and Evolution, 2019, 57(5): 440-450. |
| [67] |
Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32(3): 314. |
2023年中央林业草原生态保护恢复资金野生动植物保护项目,青海野生单子叶植物种质资源调查及其多样性评价项目(QHSY-2023-016)
青海民族大学2024年大学生创新创业训练计划项目(2024-DCXM-55)
/
| 〈 |
|
〉 |