铵态氮肥施用量对不同类型紫色土氮淋失及表面电化学性质的影响
陈薪宇 , 邓正昕 , 王子芳 , 谢军 , 代文才 , 高明
草业学报 ›› 2025, Vol. 34 ›› Issue (07) : 69 -82.
铵态氮肥施用量对不同类型紫色土氮淋失及表面电化学性质的影响
The impact of ammonium nitrogen fertilizer application rates on nitrogen leaching and surface electrochemical properties of various purple soils
氮肥施用对世界粮食生产及保障我国粮食安全产生了巨大的作用,为了阐明不同铵态氮肥施用量对不同类型紫色土氮淋失和表面电化学性质的影响,采用盆栽试验,选取3种不同类型的紫色土,设置不施氮肥(CK)、低氮量(N1,每kg土0.1 g纯氮)、中氮量(N2,每kg土0.2 g纯氮)和高氮量(N3,每kg土0.4 g纯氮)4个处理。结果表明:随着氮肥施用量增加,与对照组(CK)相比,N3处理下红棕紫泥土、灰棕紫泥土和棕紫泥土的pH值分别下降了0.9、1.2和0.8。同时,这3种土壤的铵态氮和硝态氮累计淋失量均显著增加(P<0.05),N3处理铵态氮淋失量较对照组(CK)处理分别提升7.1、15.4和12.5倍,CK处理的硝态氮几乎无淋失, N3处理的硝态氮淋失量较N1处理分别提升6.1、4.9和1.8倍(P<0.05)。3种紫色土的表面电位(φ0)、表面电场强度(E0)和表面电荷密度(σ0)均呈相似增长趋势,而比表面积(S)和表面电荷数量(SCN)则下降(P<0.05)。在相同氮肥施用量下,不同类型紫色土的氮淋失和表面电化学性质变化存在差异。在N3处理下,灰棕紫泥土铵态氮累积淋失量显著大于另外两种类型紫色土,而在所有氮肥处理下,灰棕紫泥土的硝态氮累积淋失量显著高于红棕紫泥土(P<0.05);在N1处理下,灰棕紫泥土的φ0较高,但在N3处理下,棕紫泥土的φ0显著高于其他两种土壤类型。在所有处理下,灰棕紫泥土的E0显著高于其他两种土壤(P<0.05);在N2和N3处理下,灰棕紫泥土的σ0也显著高于其他两种土壤类型(P<0.05)。S在N1、N2和N3处理中的表现为红棕紫泥土>棕紫泥土>灰棕紫泥土。在N3处理下,红棕紫泥土的SCN显著高于其他两种土壤类型(P<0.05)。因此,过量施用铵态氮肥会导致紫色土的土壤酸化,显著改变其表面电化学性质,降低对养分的吸附和保持能力。
Nitrogen fertilizer application plays an important role in world food production and in ensuring food security in China. To elucidate the effects of different ammonium nitrogen fertilizer application rates on nitrogen leaching and surface electrochemical properties of various types of purple soil, a pot experiment was conducted. Three different types of purple soil were selected, and four treatments were set up: no nitrogen fertilizer (CK), low nitrogen (N1, 0.1 g elemental nitrogen per kg soil), medium nitrogen (N2, 0.2 g elemental nitrogen per kg soil), and high nitrogen (N3, 0.4 g elemental nitrogen per kg soil). The results showed that with increasing nitrogen fertilizer application rates, compared with the control group (CK), the pH values of red brown purple soil, gray brown purple soil, and brown purple soil under the N3 treatment decreased by 0.9, 1.2, and 0.8, respectively. Meanwhile, the cumulative leaching losses of ammonium nitrogen and nitrate nitrogen in these three types of soil increased significantly (P<0.05). The ammonium nitrogen leaching losses under the N3 treatment increased by 7.1, 15.4, and 12.5 times compared with those under the control (CK) treatment, respectively. There was almost no nitrate nitrogen leaching loss in the CK treatment. The nitrate nitrogen leaching losses under the N3 treatment increased by 6.1, 4.9, and 1.8 times compared with those under the N1 treatment, respectively(P<0.05). The surface potential (φ0), surface electric field strength (E0), and surface charge density (σ0) of the three types of purple soil showed similar increasing trends, while the specific surface area (S) and surface charge number (SCN) decreased. Under the same nitrogen fertilizer application rates, there were differences in nitrogen leaching and surface electrochemical properties among the different types of purple soil. In the N3 treatment, the cumulative leaching of ammonium nitrogen in gray-brown purple soil was significantly higher than that in the other two types of purple soil. Additionally, under all nitrogen fertilizer treatments, the cumulative total amount of nitrate nitrogen leached in gray-brown purple soil was significantly higher than that in red-brown purple soil (P<0.05). Under the N1 treatment, φ0 of gray-brown purple soil was higher, while under the N3 treatment, φ0 of brown purple soil was significantly higher than that of the other two soil types. Under all treatments, the E0 of gray-brown purple soil was significantly higher than that of the other two soil types (P<0.05). Furthermore, under the N2 and N3 treatments, the σ0 of gray-brown purple soil was also significantly higher than that of the other two soil types (P<0.05). S under the N1, N2, and N3 treatments ranked: red-brown purple soil>brown purple soil>gray-brown purple soil. Under the N3 treatment, SCN of red-brown purple soil was significantly higher than that of the other two soil types (P<0.05). Therefore, excessive application of ammonium nitrogen fertilizer can lead to soil acidification in purple soils, significantly altering their surface electrochemical properties and reducing their ability to adsorb and retain nutrients.
ammonium nitrogen fertilizer / purple soil / nitrogen leaching / surface electrochemical properties of soil
| [1] |
Qiao C L, Buren B Y. Effects of application of synthetic nitrogen fertilizers on soil nutrient supply and loss of reactive nitrogen in tea (Camellia sinensis L. Kuntze) gardens in China. Acta Pedologica Sinica, 2018, 55(1): 174-181. |
| [2] |
乔春连, 布仁巴音. 合成氮肥对中国茶园土壤养分供应和活性氮流失的影响. 土壤学报, 2018, 55(1): 174-181. |
| [3] |
Chen Y Z, Wang F, You Z M, et al. Effects of different nitrogen application levels on nitrogen leaching in tea garden soil. Fujian Journal of Agricultural Sciences, 2015, 30(4): 394-399. |
| [4] |
陈玉真, 王峰, 尤志明, 不同施氮量对茶园土壤氮淋失的影响. 福建农业学报, 2015, 30(4): 394-399. |
| [5] |
Dai J, Wang C H, Li Q, et al. Effect of nitrogen application rate on winter wheat and soil nitrate nitrogen during summer fallow season on drylands. Acta Pedologica Sinica, 2013, 50(5): 956-965. |
| [6] |
戴健, 王朝辉, 李强, 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50(5): 956-965. |
| [7] |
Yan N, Wang J H, Cheng E B, et al. Effect of long-term fertilization on surface charge properties of soil clay complex. Journal of Jilin Agricultural University, 2017, 39(6): 703-708. |
| [8] |
闫娜, 王继红, 程恩宝, 长期施肥对土壤黏粒级复合体表面电荷性质的影响. 吉林农业大学学报, 2017, 39(6): 703-708. |
| [9] |
Tian Q H, Liu D, Liao X Q, et al. Effects of nitrogen fertilization on soil aggregate biological binding agents and stability in an alpine grassland. Acta Prataculturae Sinica, 2024, 33(11): 46-57. |
| [10] |
田晴华, 刘丹, 廖小琴, 施氮对高寒草地土壤团聚体生物胶结物质及稳定性的影响. 草业学报, 2024, 33(11): 46-57. |
| [11] |
Wang P, Xu D, Lakshmanan P, et al. Mitigation strategies for soil acidification based on optimal nitrogen management. Frontiers of Agricultural Science and Engineering, 2024, 11(2): 229-242. |
| [12] |
Yu L, Gao M, Huang L L, et al. Effects of nitrogen fertilization on leaching characteristics of NO3 --N and base cations in latosol. Journal of Plant Nutrition and Fertilizers, 2013, 19(3): 698-704. |
| [13] |
余泺, 高明, 黄利玲, 施用氮肥对砖红壤硝态氮和盐基离子淋失特征的影响. 植物营养与肥料学报, 2013, 19(3): 698-704. |
| [14] |
Jiang X, Ma Y, Yuan J, et al. Soil particle surface electrochemical property effects on abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea, NH4 + activity, and net nitrification in an acid soil. Soil Biology & Biochemistry, 2011, 43(11): 2215-2221. |
| [15] |
Yu Z H, Liu X M, Li H. On surface charge properties of red, yellow and calcareous purplish soils. Journal of Southwest China Normal University (Natural Science Edition), 2013, 38(3): 62-66. |
| [16] |
余正洪, 刘新敏, 李航. 红壤黄壤及紫色土表面电荷性质的研究. 西南师范大学学报(自然科学版), 2013, 38(3): 62-66. |
| [17] |
Zhao C, Sheng M Y, Li Y X, et al. Characteristics of soil electrochemical properties and soil environmental impact factors in Karst ecosystem in South West China. Acta Pedologica Sinica, 2022, 59(3): 756-766. |
| [18] |
赵楚, 盛茂银, 李雨萱, 喀斯特生态系统土壤表面电化学特征及其影响因子. 土壤学报, 2022, 59(3): 756-766. |
| [19] |
Yang Y N, Liu J Y, Wang P P, et al. Effects of typical vegetation communities on soil surface electrochemical properties and their spatial difference on the Loess Plateau. Journal of Soil and Water Conservation, 2022, 36(3): 345-351. |
| [20] |
杨亚楠, 刘均阳, 王佩佩, 黄土高原典型植被群落对土壤表面电化学性质的影响及其空间差异. 水土保持学报, 2022, 36(3): 345-351. |
| [21] |
Zhang W. Effects of soil particle surface electric field on nitrification in acidic soil. Chongqing: Southwest University, 2010. |
| [22] |
张伟. 土壤颗粒表面电场对酸性土壤硝化作用的影响. 重庆: 西南大学, 2010. |
| [23] |
Ding W Q, Li H, Song Z R, et al. Surface charge properties of neutral purplish soil and latosol. Chinese Journal of Soil Science, 2007, 38(6): 1086-1091. |
| [24] |
丁武泉, 李航, 宋仲容, 中性紫色土和砖红壤表面电荷性质的比较研究. 土壤通报, 2007, 38(6): 1086-1091. |
| [25] |
Walsch J, Dultz S. Effects of pH, Ca2+ and SO4 2- concentration on surface charge and colloidal stability of goethite and hematite-consequences for the adsorption of anionic organic substances. Clay Minerals, 2010, 45(1): 1-13. |
| [26] |
Zhu M X, Jiang X, Ji G L. Kinetics of interaction of H+ with constant and variable charge soils. Environmental Science, 2001, 22(3): 49-53. |
| [27] |
朱茂旭, 蒋新, 季国亮. 可变电荷土壤和恒电荷土壤与氢离子的反应动力学. 环境科学, 2001, 22(3): 49-53. |
| [28] |
Li C P, Li X, Wang X, et al. Effects of acidification environment on exchangeable cations and acid buffering capacity of weathering products of purple parent rock. Acta Pedologica Sinica, 2024, 61(1): 258-271. |
| [29] |
李春培, 李雪, 汪璇, 酸化环境对紫色母岩风化产物交换性盐基离子及其酸缓冲容量的影响. 土壤学报, 2024, 61(1): 258-271. |
| [30] |
Luo D Q, Wei C F, Xie D T. Physicochemical characterization of purple soil surface//The 10th national congress of China geosynthetics society and the 5th cross-strait soil fertilizer symposium. Shenyang: Soil Science Society of China, 2004: 96. |
| [31] |
骆东奇, 魏朝富, 谢德体. 紫色土表面物理化学特征研究//中国地壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会. 沈阳: 中国土壤学会, 2004: 96. |
| [32] |
Yang J H, Wang C L, Dai H L. Soil agrochemical analysis and environmental monitoring. Beijing: China Land Press, 2008. |
| [33] |
杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008. |
| [34] |
Li H, Qing C L, Wei S Q, et al. An approach to the method for determination of surface potential on solid/liquid interface: theory. Journal of Colloid and Interface Science, 2004, 275(1): 172-176. |
| [35] |
Yu L. Effect of nitrogen application on the coupling leaching of nitrate nitrogen and base cations in variably charged soils. Chongqing: Southwest University, 2012. |
| [36] |
余泺. 施氮对可变电荷土壤中硝酸根离子和盐基离子耦合迁移的影响. 重庆: 西南大学, 2012. |
| [37] |
Song Z Z, Li X H, Li J, et al. Long-term effects of mineral versus organic fertilizers on soil labile nitrogen fractions and soil enzyme activities in agricultural soil. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 525-533. |
| [38] |
宋震震, 李絮花, 李娟, 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响. 植物营养与肥料学报, 2014, 20(3): 525-533. |
| [39] |
He R L, Jiang Y J, Zhang Y Z, et al. Characteristics and sources of atmospheric inorganic nitrogen and sulfur deposition in the suburbs of Chongqing. Acta Ecologica Sinica, 2019, 39(16): 6173-6185. |
| [40] |
何瑞亮, 蒋勇军, 张远瞩, 重庆市近郊大气无机氮、硫沉降特征及其来源分析. 生态学报, 2019, 39(16): 6173-6185. |
| [41] |
De Vries W, Liu X, Yuan L. Highlights of the special issue “Progress on nitrogen research from soil to plant and to the environment”. Frontiers of Agricultural Science and Engineering, 2022, 9(3): 313-315. |
| [42] |
Wahyudi I, Handayanto E. The potential of legume tree prunings as organic matters for improving phosphorus availability in an acid soil. Journal of Degraded and Mining Lands Management, 2015, 2(2): 259-266. |
| [43] |
Song H X, Li S X. Effects of root uptake function and soil water on NO3 --N and NH4 +-N distribution. Scientia Agricultura Sinica, 2005, 38(1): 96-101. |
| [44] |
宋海星, 李生秀. 根系的吸收作用及土壤水分对硝态氮、铵态氮分布的影响. 中国农业科学, 2005, 38(1): 96-101. |
| [45] |
Chuan L M, Zhao T K, An Z Z, et al. Research advancement in nitrate leaching and nitrogen use in soils. Chinese Agricultural Science Bulletin, 2010, 26(11): 200-205. |
| [46] |
串丽敏, 赵同科, 安志装, 土壤硝态氮淋溶及氮素利用研究进展. 中国农学通报, 2010, 26(11): 200-205. |
| [47] |
Sinatra M, Giannetta B, Plaza C, et al. Anaerobic digestate influences the carbon distribution in soil organic matter pools after six months from its application. Soil & Tillage Research, 2024, 239(1): 106049. |
| [48] |
Li Y, Xu M, Xie Y H, et al. Effects of different modifiers on aggregates and organic carbon in acidic purple soil. Environmental Science, 2024, 45(2): 974-982. |
| [49] |
李越, 徐曼, 谢永红, 不同改良剂对酸性紫色土团聚体和有机碳的影响. 环境科学, 2024, 45(2): 974-982. |
| [50] |
Su Y Z, Wang F, Suo D R, et al. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize cropping system in northwest China. Nutrient Cycling in Agroecosystems, 2006, 75(1/2/3): 285-295. |
| [51] |
Li X A, Tong C L, Jiang P, et al. Effects of long-term fertilization on soil organic matter and total nitrogen in paddy soil. Soils, 2006(3): 298-303. |
| [52] |
李新爱, 童成立, 蒋平, 长期不同施肥对稻田土壤有机质和全氮的影响. 土壤, 2006(3): 298-303. |
| [53] |
Nie J, Zheng S X, Yang Z P, et al. Effects of long-term application of chemical fertilizers, pig manure and rice straw on physical properties of a reddish paddy soil. Scientia Agricultura Sinica, 2010, 43(7): 1404-1413. |
| [54] |
聂军, 郑圣先, 杨曾平, 长期施用化肥、猪粪和稻草对红壤性水稻土物理性质的影响. 中国农业科学, 2010, 43(7): 1404-1413. |
| [55] |
Bouman O T, Curtin D, Campbell C A, et al. Soil acidification from long-term use of anhydrous ammonia and urea. Soil Science Society of America Journal, 1995, 59(5): 1488-1494. |
| [56] |
Zhou J, Xia F, Liu X, et al. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. Journal of Soils and Sediments, 2014, 14(2): 415-422. |
| [57] |
Li T, Yu L, Wan G H, et al. Spatio-temporal variation of farmland soil pH and associated affecting factors in the past 30 years of Shandong Province, China. Acta Pedologica Sinica, 2021, 58(1): 180-190. |
| [58] |
李涛, 于蕾, 万广华, 近30年山东省耕地土壤pH时空变化特征及影响因素. 土壤学报, 2021, 58(1): 180-190. |
| [59] |
Li J, Zhang L C, Zhang M Q, et al. Characterization and prediction of topsoil acidification of latosolic red soil caused by long-term urea application. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2161-2171. |
| [60] |
李娟, 张立成, 章明清, 长期施用尿素降低赤红壤旱地耕层pH的特征与预测. 植物营养与肥料学报, 2022, 28(12): 2161-2171. |
| [61] |
Luo F X, Liu H T, Lin C W, et al. Effects of nitrogen fertilizer forms on soil nitrogen loss dynamics of sloping land in rainy season. Soil and Fertilizer Sciences in China, 2015(3): 12-20. |
| [62] |
罗付香, 刘海涛, 林超文, 不同形态氮肥在坡耕地雨季土壤氮素流失动态特征. 中国土壤与肥料, 2015(3): 12-20. |
| [63] |
Zhao X, Cai S Y, Xing G X, et al. Nitrification and nitrogen leaching in tropical and subtropical acid soils. Soils, 2020, 52(1): 1-9. |
| [64] |
赵旭, 蔡思源, 邢光熹, 热带亚热带酸性土壤硝化作用与氮淋溶特征. 土壤, 2020, 52(1): 1-9. |
| [65] |
Liu L. Acidity characteristics and acid buffering performance of typical purple soils in the Sichuan Basin. Chongqing: Southwest University, 2022. |
| [66] |
刘莉. 四川盆地典型紫色土的酸度特征和酸缓冲性能. 重庆: 西南大学, 2022. |
| [67] |
Chen Z C, Zhang M Q, Chen F, et al. Effect of N fertilizer on nitrate-nitrogen loss from garden soils. Ecology and Environment, 2008(3): 1230-1234. |
| [68] |
陈子聪, 章明清, 陈防, 氮肥对菜园土壤硝态氮淋溶流失的影响. 生态环境, 2008(3): 1230-1234. |
| [69] |
Cheng Y, Zhang J B, Cai Z C. Key role of matching of crop-specific N preference, soil N transformation and climate conditions in soil N nutrient management. Acta Pedologica Sinica, 2019, 56(3): 507-515. |
| [70] |
程谊, 张金波, 蔡祖聪. 气候-土壤-作物之间氮形态契合在氮肥管理中的关键作用. 土壤学报, 2019, 56(3): 507-515. |
| [71] |
Meng Y, Wang Z H, Luo H Y, et al. Mechanisms research on how pH affects nitrification in purple soils of Southwest China. Acta Prataculturae Sinica, 2017, 26(4): 73-79. |
| [72] |
孟瑶, 王智慧, 罗红燕, 西南地区pH影响紫色土硝化作用机制研究. 草业学报, 2017, 26(4): 73-79. |
| [73] |
Lan X, Wang T, Yang C L, et al. Effects of different phosphorus application rates on nitrate nitrogen leaching in vegetable fields. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 958-964. |
| [74] |
兰翔, 王婷, 杨春玲, 不同施磷量对蔬菜地土壤硝态氮淋失的影响. 植物营养与肥料学报, 2016, 22(4): 958-964. |
| [75] |
Van Den Bergh S G, Chardon I, Leite M F A, et al. Soil aggregate stability governs field greenhouse gas fluxes in agricultural soils. Soil Biology & Biochemistry, 2024, 191(1): 109354. |
| [76] |
Wang W Y, Shen P F, Zhang H P, et al. Study on the relationship between total nitrogen and nitrogen functional microorganisms in soil aggregates under long-term conservation tillage. Acta Pedologica Sinica, 2024, 61(6): 1653-1667. |
| [77] |
王威雁, 沈鹏飞, 张侯平, 长期保护性耕作下土壤团聚体全氮与氮功能微生物关系研究. 土壤学报, 2024, 61(6): 1653-1667. |
| [78] |
Guo W Z, Hu F N, Tan T T, et al. Effects of soil surface electric field on aggregates breakdown and water erosion in black soil region of Northeast China. Chinese Journal of Applied Ecology, 2020, 31(8): 2644-2652. |
| [79] |
郭威震, 胡斐南, 谭滔滔, 土壤表面电场对黑土团聚体破碎和侵蚀的影响. 应用生态学报, 2020, 31(8): 2644-2652. |
| [80] |
Xie H B, Guan S Y, Chen Y M, et al. Characteristics of soil nitrogen leaching in facility vegetable fields and the control measures: A review. Chinese Agricultural Science Bulletin, 2022, 38(23): 82-87. |
| [81] |
谢洪宝, 关诗洋, 陈一民, 设施菜田土壤氮素淋溶特征及阻控措施的研究进展. 中国农学通报, 2022, 38(23): 82-87. |
| [82] |
Jiang Z X, Cui S, Zhang X, et al. Influence of biochar application on soil nitrate leaching and phosphate retention: A synthetic Meta-analysis. Environmental Science, 2022, 43(10): 4658-4668. |
| [83] |
姜志翔, 崔爽, 张鑫, 基于Meta-analysis的生物炭对土壤硝态氮淋失和磷酸盐固持影响. 环境科学, 2022, 43(10): 4658-4668. |
| [84] |
Liu X, Tan N, Zhou G, et al. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant and Soil, 2021, 464(1/2): 257-272. |
| [85] |
Gao L M, Tian Q, Su J, et al. Effects of nitrogen application on dry matter yield and nitrogen fertilizer use efficiency in sweet sorghum (Sorghum bicolor). Acta Prataculturae Sinica, 2020, 29(4): 192-198. |
| [86] |
高丽敏, 田倩, 苏晶, 施氮水平对甜高粱干物质产量及氮肥利用率的影响. 草业学报, 2020, 29(4): 192-198. |
| [87] |
Ma S K, Huo K, Zhang D X, et al. Effects of maize straw return combined with nitrogen on soil enzyme activity and nitrogen fertilizer use efficiency in western dryland wheat fields of Henan Province. Acta Prataculturae Sinica, 2023, 32(6): 120-133. |
| [88] |
马嵩科, 霍克, 张冬霞, 玉米秸秆还田配施氮肥对豫西旱地小麦土壤酶活性和氮肥利用效率的影响. 草业学报, 2023, 32(6): 120-133. |
| [89] |
Wang Q, Wen J, Wen Y, et al. Alteration of soil-surface electrochemical properties by organic fertilization to reduce dissolved inorganic nitrogen leaching in paddy fields. Soil & Tillage Research, 2021, 209(1): 104956. |
| [90] |
Ma R T, Hu F N, Liu J F, et al. Evolution of soil surface electrochemical characteristics with vegetation restoration on Loess Plateau in Ziwuling area. Acta Pedologica Sinica, 2020, 57(2): 392-402. |
| [91] |
马任甜, 胡斐南, 刘婧芳, 黄土高原植被恢复过程中土壤表面电化学性质演变特征. 土壤学报, 2020, 57(2): 392-402. |
| [92] |
Rengasamy P, Olsson K. Sodicity and soil structure. Soil Research, 1991, 29(6): 935-952. |
| [93] |
Liu J Y, Yang Y A, Zheng Q W, et al. Effects of soil surface electrochemical properties on soil detachment regulated by soil types and plants. Science of the Total Environment, 2022, 834(1): 154991. |
国家自然科学基金项目(42177019)
/
| 〈 |
|
〉 |