干旱及复水对河北木蓝生物量分配与渗透调节特征的影响
雍嘉仪 , 马霜 , 马风华 , 赵小娜 , 张译尹 , 胡海英
草业学报 ›› 2025, Vol. 34 ›› Issue (07) : 158 -170.
干旱及复水对河北木蓝生物量分配与渗透调节特征的影响
Effects of drought stress and rehydration on biomass allocation and osmotic regulation characteristics of Indigofera bungeana
植物在遭受干旱胁迫后复水,会经历应激适应、伤害、修复过程,且不同植物对水分亏缺的敏感性不同,复水后的恢复效应也存在差异。因此,研究植物耐旱性与复水后的恢复效应对植物抗旱节水育种具有重要意义。本研究采用盆栽控水模拟干旱胁迫和复水处理,以野生型和栽培型河北木蓝为对象,在持续干旱胁迫3、6、10和13 d以及复水2和7 d后进行生长及生理生化指标测定,研究干旱胁迫和复水条件下2种木蓝的生物量分配策略和响应干旱的渗透调节生理机制及其种内差异。结果表明:1)随干旱持续时间的延长,2种木蓝器官生物量、根系分布特征(总根长、根表面积、根体积、根分枝数)、淀粉含量以及根-中性转化酶(neutral invertase, NIV)活性逐渐降低;而根冠比、脯氨酸(Pro)含量、丙二醛(MDA)含量、蔗糖含量、蔗糖合酶(sucrose synthase, SUS)活性、α-淀粉酶(α-amylase, α-AL)活性、叶-NIV活性均逐渐增加。2)复水处理7 d后,除了根系分布特征和MDA含量外,其他指标均恢复至对照水平,均具有补偿生长能力。3)基于各指标的主成分分析结果,相比之下,栽培型木蓝各指标变化幅度均显著大于野生型,对干旱胁迫具有更强的耐受性。由此可见,2种木蓝在干旱胁迫下积累渗透调节物质,以此维持细胞膨压,缓解细胞膜受损,并调控蔗糖和淀粉代谢酶活性,进而使生物量分配倾向于根系,为促进根系对水分吸收而提供能量,复水后二者均具有显著的补偿效应。
Plants under drought stress show various types of injury, and have adaptation strategies and repair processes that function during rehydration after drought stress. The degree of sensitivity to water deficit and the extent of recovery after rehydration differ among different plants. Therefore, it is of great significance to study drought tolerance and recovery after rehydration to breed drought-resistant and water-saving plants. In this research, a comparative analysis was conducted using wild and cultivated species of Indigofera bungeana. The plants were subjected to a drought stress treatment, imposed by controlling the water level in pots, followed by rehydration. Growth and physiological indexes were measured at 3, 6, 10, and 13 days of the drought stress treatment and at 2 and 7 days after rehydration. We explored the effects of drought stress and rehydration on biomass distribution to different organs, root distribution, and osmotic regulation, with an aim to analyze biomass allocation strategies and the physiological mechanisms of the drought response, and compared these characteristics between wild and cultivated I. bungeana. The main results of the study are as follows: 1) With prolonged drought stress, the organ biomass, root allocation characteristics (total root length, root surface area, root volume, root branches), starch content, and activity of root neutral invertase (NIV) decreased, whereas the root-shoot ratio, the contents of proline, malondialdehyde (MDA), and sucrose, and the activities of sucrose synthase, α-amylase, and leaf NIV gradually increased. 2) At 7 days after rehydration, except for root distribution and MDA content, all the other growth and physiological indexes returned to the control level, indicating that the plants were capable of compensatory growth after drought. 3) A principal component analysis based on all the indexes showed that the amplitude of the change in the indexes was significantly greater in the cultivated species than in the wild one, indicating that the cultivated species is more tolerant to drought stress. Under continuous drought stress, the two species of I. bungeana maintained turgor pressure by accumulating osmolarity-regulating substances, which alleviated damage to cell membranes. Moreover, the activity of sucrose- and starch-metabolizing enzymes was regulated to allocate biomass to the root system, and to provide energy to promote water absorption by the root system as adaptations to drought stress. Both species showed significant compensatory growth after rehydration.
河北木蓝 / 干旱及复水 / 生物量分配 / 渗透调节 / 补偿生长
Indigofera bungeana / drought and rehydration / biomass allocation / osmotic regulation / compensatory growth
| [1] |
Wang X X, Li Y, Zhang B, et al. Effects of drought stress and rehydration on root growth and physiological characteristics of oats. Acta Agrestia Sinica, 2020, 28(6): 1588-1596. |
| [2] |
王晓雪, 李越, 张斌, 干旱胁迫及复水对燕麦根系生长及生理特性的影响. 草地学报, 2020, 28(6): 1588-1596. |
| [3] |
Xu S R, Zhang E H, Ma R L, et al. Hydraulic characteristics of Lycium barbarum L. seedlings under drought stress and re-watering conditions. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1190-1197. |
| [4] |
胥生荣, 张恩和, 马瑞丽, 干旱胁迫及复水对耐旱枸杞水力学特性的影响. 中国生态农业学报, 2017, 25(8): 1190-1197. |
| [5] |
Cui W Y, Liu S J, Wei Y W, et al. Effects of nitrogen addition on biomass allocation of Pinus koraiensis and Fraxinus mandshurica seedlings under water stress. Chinese Journal of Applied Ecology, 2019, 30(5): 1454-1462. |
| [6] |
崔婉莹, 刘思佳, 魏亚伟, 氮添加和水分胁迫对红松、水曲柳幼苗生物量分配的影响. 应用生态学报, 2019, 30(5): 1454-1462. |
| [7] |
Cui W J, Chang Z Y, Li N. Effects of drought stress on physiological ecology and yield of soybean. Journal of Water Resources and Water Engineering, 2013, 24(4): 20-24. |
| [8] |
崔维佳, 常志云, 李宁. 干旱胁迫对大豆生理生态及产量的影响. 水资源与水工程学报, 2013, 24(4): 20-24. |
| [9] |
Wang Y, Guo H L, Zong J Q, et al. Growth and physiological responses of two Zoysia germplasms with different drought resistance under drought stress and rewatering conditions. Jiangsu Agricultural Sciences, 2022, 50(9): 159-168. |
| [10] |
汪毅, 郭海林, 宗俊勤, 干旱胁迫及复水条件下2种抗旱性不同结缕草种质的生长和生理响应. 江苏农业科学, 2022, 50(9): 159-168. |
| [11] |
Xie R J, Zhang X J, Liu J P, et al. Synergistic effects of drought and shade on component morphology and biomass allocation of Arthraxon hispidus. Pratacultural Science, 2017, 34(7): 1496-1505. |
| [12] |
谢瑞娟, 张小晶, 刘金平, 干旱和遮阴对荩草构件形态及生物量分配的影响. 草业科学, 2017, 34(7): 1496-1505. |
| [13] |
Wang L, Zhang T, Ding S Y. Effect of drought and rewatering on photosynthetic physioecology of wheat of differing ploidy. Acta Ecologica Sinica, 2008, 28(4): 1593-1600. |
| [14] |
王磊, 张彤, 丁圣彦. 干旱和复水对不同倍性小麦光合生理生态的影响. 生态学报, 2008, 28(4): 1593-1600. |
| [15] |
Shao Y J, Shan L, Li G M. Comparison of osmotic regulation and antioxidation between sorghum and maize seedlings under soil drought stress and water recovering conditions. Chinese Journal of Eco-Agriculture, 2006, 14(1): 68-70. |
| [16] |
邵艳军, 山仑, 李广敏. 干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究. 中国生态农业学报, 2006, 14(1): 68-70. |
| [17] |
Li J W, Wang J X, Zhang M L, et al. Effect of drought and rewater on leaf water potential of Robinia pseudoacacia. Journal of Northwest Forestry University, 2009, 24(3): 33-36. |
| [18] |
李继文, 王进鑫, 张慕黎, 干旱及复水对刺槐叶水势的影响. 西北林学院学报, 2009, 24(3): 33-36. |
| [19] |
Zhou Z Y, Liang Z S, Li S, et al. Effect of water stress and re-watering on relative water content, protective enzyme and photosynthetic characteristics of wild jujube. Chinese Journal of Eco-Agriculture, 2011, 19(1): 93-97. |
| [20] |
周自云, 梁宗锁, 李硕, 干旱-复水对酸枣相对含水量、保护酶及光合特征的影响. 中国生态农业学报, 2011, 19(1): 93-97. |
| [21] |
Hu X W, Wang Y R, Wu Y P. Research progress on eco-physiological responses of desert grassland plants to drought conditions. Acta Prataculturae Sinica, 2004, 13(3): 9-15. |
| [22] |
胡小文, 王彦荣, 武艳培. 荒漠草原植物抗旱生理生态学研究进展. 草业学报, 2004, 13(3): 9-15. |
| [23] |
Liu Y, Yang W, Ma H L, et al. Effects of salt stress on seedling physiological characteristics of six kentucky bluegrass. Journal of Gansu Agricultural University, 2019, 54(5): 140-150, 162. |
| [24] |
刘燕, 杨伟, 马晖玲, 盐胁迫对6种草地早熟禾幼苗生理特性的影响. 甘肃农业大学学报, 2019, 54(5): 140-150, 162. |
| [25] |
Zou Q Q, Wang Y S, Jiang Z Y, et al. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region. Journal of Beijing Forestry University, 2021, 43(10): 1-8. |
| [26] |
邹青勤, 王奕淞, 蒋治岩, 典型黑土区不同水土保持树种的非结构性碳水化合物特征及种间差异. 北京林业大学学报, 2021, 43(10): 1-8. |
| [27] |
Qi Y J, Xing X H, Wang H R, et al. Effect of GmYUC12a on sucrose metabolism in soybean lateral roots under drought stress. Journal of Nuclear Agricultural Sciences, 2024, 38(12): 2294-2304. |
| [28] |
齐玉军, 邢兴华, 王好让, 干旱胁迫下GmYUC12a对大豆侧根蔗糖代谢的影响. 核农学报, 2024, 38(12): 2294-2304. |
| [29] |
Chen L H, Yang X M, Jia H, et al. Effects of elevated temperature and drought on sugar accumulation, key sucrose enzymes metabolism and related genes expression in fruit of jujube cultivar Lingwuchangzao. Journal of Nuclear Agricultural Sciences, 2020, 34(9): 2112-2123. |
| [30] |
陈丽华, 杨喜盟, 贾昊, 气温升高与干旱对灵武长枣果实糖积累、蔗糖代谢关键酶及相关基因表达的影响. 核农学报, 2020, 34(9): 2112-2123. |
| [31] |
Guo Y R, Chen F Q. Indigofera tinctoria and Lespedeza floribunda ecophysiological responses to high phosphorus stress and characteristics of phosphorus absorb and utilization. Journal of Fujian Forestry Science and Technology, 2011, 38(2): 50-55. |
| [32] |
郭彦荣, 陈芳清. 木蓝和胡枝子对高磷胁迫的生理生态响应及其磷吸收利用特征. 福建林业科技, 2011, 38(2): 50-55. |
| [33] |
Ran Q F, He W, Xu Y D, et al. Research development of Indigofera pseudotinctoria Matsum. China Feed, 2019, 633(13): 87-90. |
| [34] |
冉启凡, 何玮, 徐远东, 优质木本饲用植物马棘研究进展. 中国饲料, 2019, 633(13): 87-90. |
| [35] |
Zhang H, Hu H Y, Li H X, et al. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
| [36] |
张浩, 胡海英, 李惠霞, 荒漠草原优势植物牛枝子对干旱胁迫的生理响应与转录组分析. 草业学报, 2023, 32(7): 188-205. |
| [37] |
Zhang D, Liu Y, Zhang H, et al. Response of osmotic regulators and sucrose metabolization-related enzymes to drought stress in Glycyrrhiza uralensis. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(5): 819-827. |
| [38] |
张东, 刘艳, 张晗, 甘草叶片渗透调节物质及蔗糖代谢相关酶对干旱胁迫的响应特性. 西北植物学报, 2020, 40(5): 819-827. |
| [39] |
Yao Y P. Mining of genes in peony in response to high temperature stress based on transcriptome sequencing technology. Changsha: Central South University of Forestry & Technology, 2022. |
| [40] |
姚奕平. 基于转录组测序技术挖掘牡丹响应高温胁迫基因研究. 长沙: 中南林业科技大学, 2022. |
| [41] |
Zhang H, Zhang H, Liu X, et al. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Frontiers in Plant Science, 2017, 8(8): 1580. |
| [42] |
Agnieszka J, Miroslaw K, Iwona S. Gene expression regulation in roots under drought. Journal of Experimental Botany, 2016, 67(4): 1003-1014. |
| [43] |
Xu F, Guo W H, Xu W H, et al. Effects of water stress on morphology, biomass allocation and photosynthesis in Robinia pseudoacacia seedlings. Journal of Beijing Forestry University, 2010, 32(1): 24-30. |
| [44] |
徐飞, 郭卫华, 徐伟红, 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应. 北京林业大学学报, 2010, 32(1): 24-30. |
| [45] |
Yan H X, Fang L B, Huang D Z. Effects of drought stress on the biomass distribution and photosynthetic characteristics of cluster mulberry. Chinese Journal of Applied Ecology, 2011, 22(12): 3365-3370. |
| [46] |
闫海霞, 方路斌, 黄大庄. 干旱胁迫对条墩桑生物量分配和光合特性的影响. 应用生态学报, 2011, 22(12): 3365-3370. |
| [47] |
Wang X D, Cao L P, Liu Y D. Effects of drought stress on root morphology & biomass allocation of Betula maximowicziana. Protection Forest Science and Technology, 2011(5): 20-22, 50. |
| [48] |
王晓冬, 曹立萍, 刘延迪. 干旱胁迫对真桦根系形态及生物量分配的影响. 防护林科技, 2011(5): 20-22, 50. |
| [49] |
Li M D, Zhang H P. Effects of water stress and rewatering on the dry matter accumulation, root shoot ratio and yield of pea. Journal of Desert Research, 2016, 36(4): 1034-1040. |
| [50] |
李明达, 张红萍. 水分胁迫及复水对豌豆干物质积累、根冠比及产量的影响. 中国沙漠, 2016, 36(4): 1034-1040. |
| [51] |
Li D Q, Zeng P C, Chen G K, et al. Effects of drought stress on biomass distribution and physiological characteristics in three kinds of leguminous shrubs. Journal of Central South University of Forestry & Technology, 2016, 36(1): 33-39. |
| [52] |
李冬琴, 曾鹏程, 陈桂葵, 干旱胁迫对3种豆科灌木生物量分配和生理特性的影响. 中南林业科技大学学报, 2016, 36(1): 33-39. |
| [53] |
Li Z S, Wan L Q, Li S, et al. Response of alfalfa root architecture and physiological characteristics to drought rehydration. Acta Prataculturae Sinica, 2021, 30(1): 189-196. |
| [54] |
李振松, 万里强, 李硕, 苜蓿根系构型及生理特性对干旱复水的响应. 草业学报, 2021, 30(1): 189-196. |
| [55] |
Guo H X, Xu B, Wu Y, et al. Allometric partitioning theory versus optimal partitioning theory: the adjustment of biomass allocation and internal C-N balance to shading and nitrogen addition in Fritillaria unibracteata (Liliaceae). Polish Journal of Ecology, 2016, 64(2): 189-199. |
| [56] |
Linghu K N, Wang S. Responses of biomass allocation to population density and soil water in Abutilon theophrasti at different growth stages. Bulletin of Botanical Research, 2023, 43(2): 272-280. |
| [57] |
令狐克念, 王姝. 不同生长阶段苘麻生物量分配对种群密度和土壤水分的响应. 植物研究, 2023, 43(2): 272-280. |
| [58] |
Wang X, Hu H L, Hu T X, et al. Effects of drought stress on the osmotic adjustment and active oxygen metabolism of Phoebe zhennan seedlings and its alleviation by nitrogen application. Chinese Journal of Plant Ecology, 2018, 42(2): 240-251. |
| [59] |
王曦, 胡红玲, 胡庭兴, 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应. 植物生态学报, 2018, 42(2): 240-251. |
| [60] |
Zang Z F, Bai J, Liu C, et al. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
| [61] |
臧真凤, 白婕, 刘丛, 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性. 草业学报, 2021, 30(6): 73-81. |
| [62] |
Li Y P, Peng Y. Improvement of oxidation resistance protection and adjustment ability regulation of white clover seedlings by exogenous IAA under PFG stress. Pratacultural Science, 2017, 34(11): 2295-2302. |
| [63] |
李亚萍, 彭燕. IAA改善PEG处理下白三叶幼苗叶片抗氧化保护和渗透调节能力. 草业科学, 2017, 34(11): 2295-2302. |
| [64] |
Fan W J, Zhang M, Zhang H X, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One, 2017, 7(5): e37344. |
| [65] |
Zhang P, Zhang H, Liu J N, et al. Effects of drought and re-watering treatment on physiological and biochemical indexes of different drought-resistant wheat varieties/lines at seedling stage. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(12): 1795-1802. |
| [66] |
张平, 张慧, 刘俊娜, 干旱及复水处理对抗旱性不同小麦品种/系苗期生理生化指标的影响. 西北农业学报, 2020, 29(12): 1795-1802. |
| [67] |
An Y, Zhang Q Y, Li S B, et al. Effects of drought stress and rehydration on antioxidant enzyme activity and photosynthetic characteristic of Glycyrrhiza uralensis Fisch. Journal of Ningxia Agriculture and Forestry Science and Technology, 2021, 62(7): 1-5. |
| [68] |
安钰, 张清云, 李生兵, 干旱胁迫及复水对甘草叶片抗氧化酶活性和光合特性的影响. 宁夏农林科技, 2021, 62(7): 1-5. |
| [69] |
Zuo X R, Liang Z S, Tian Z, et al. Effect of progressive drying and rewatering on leaf protective enzyme activities of Salvia miltiorrhiza. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(2): 110-113. |
| [70] |
左小容, 梁宗锁, 田胄, 持续干旱胁迫及复水对丹参幼苗抗氧化酶活性的影响. 西北农业学报, 2011, 20(2): 110-113. |
| [71] |
Mukerjea R, Robyt F J. Starch biosynthesis: sucrose as a substrate for the synthesis of a highly branched component found in 12 varieties of starches. Carbohydrate Research, 2003, 338(18): 1811-1822. |
| [72] |
Zhang Y N, Lei L, Xia B. Effects of drought stress and rewatering on seedling growth and physiological characteristics of Lysimachia davurica. Pratacultural Science, 2016, 33(9): 1681-1689. |
| [73] |
张彦妮, 雷蕾, 夏斌. 干旱胁迫及复水对黄连花幼苗生长和生理特性的影响. 草业科学, 2016, 33(9): 1681-1689. |
| [74] |
Guo X Y, Peng C H, Li T, et al. The effects of drought and re-watering on non-structural carbohydrates of Pinus tabulaeformis seedlings. Biology, 2021, 10(4): 281. |
| [75] |
Wang Y X, Shan L S, Xie T T, et al. The effects of drought-rehydration on non-structural carbohydrates in Reaumuria soongorica seedlings. Chinese Journal of Ecology, 2024, 43(2): 383-394. |
| [76] |
王雲霞, 单立山, 解婷婷, 干旱-复水对红砂幼苗各器官非结构性碳水化合物的影响. 生态学杂志, 2024, 43(2): 383-394. |
| [77] |
Jin S Y, Peng Z D, Zhang S L. The impact of varying degrees of drought stress and rehydration treatment on the physiological indicators of Robinia pseudoacacia seedlings. Journal of Northeast Forestry University, 2024, 52(10): 27-39. |
| [78] |
金思雨, 彭祚登, 张舒乐. 不同程度干旱胁迫和复水处理对刺槐苗木生理指标的影响. 东北林业大学学报, 2024, 52(10): 27-39. |
| [79] |
Zhao J H, Li H X, An W, et al. Sugar metabolism and photosynthetic characteristics in leaf of Lycium barbarum L. under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(5): 970-975. |
| [80] |
赵建华, 李浩霞, 安巍, 干旱胁迫对宁夏枸杞叶片蔗糖代谢及光合特性的影响. 西北植物学报, 2013, 33(5): 970-975. |
| [81] |
Li X X, Ding M M, Liu Y, et al. Clone and differential expression of sucrose synthase gene Sus2 from Nostoc flagelliforme under drought stress. Molecular Plant Breeding, 2018, 16(20): 6662-6669. |
| [82] |
李晓旭, 丁苗苗, 刘阳, 干旱胁迫下发菜蔗糖合成酶基因Sus2克隆与差异表达. 分子植物育种, 2018, 16(20): 6662-6669. |
| [83] |
He J, Tang Y, Li X R, et al. Effects of water deficit on photosynthetic characteristic and sucrose-starch synthesis of wheat awns and flag leaf. Agricultural Research in the Arid Areas, 2021, 39(6): 53-61, 78. |
| [84] |
和娟, 唐燕, 李晓瑞, 水分亏缺对小麦芒和旗叶光合特性及蔗糖、淀粉合成的影响. 干旱地区农业研究, 2021, 39(6): 53-61, 78. |
| [85] |
Deng S Y, Mai Y T, Chen H P, et al. Bioinformatics and expression analysis of the sucrose synthase (SUS) and invertase (INV) gene families in Citrus grandis ‘Seedless’. Plant Physiology Journal, 2018, 54(10): 1576-1586. |
| [86] |
邓舒雅, 麦贻婷, 陈惠萍, 无籽蜜柚蔗糖合成酶(SUS)和蔗糖转化酶(INV)基因家族生物信息学及表达分析. 植物生理学报, 2018, 54(10): 1576-1586. |
| [87] |
Gao Y T, Zhang R, Li H X, et al. Effect of water stress on sugar accumulation and sucrose metabolism enzyme activities of greenhouse grape fruit. Arid Zone Research, 2021, 38(6): 1713-1721. |
| [88] |
高彦婷, 张芮, 李红霞, 水分胁迫对葡萄糖分及其蔗糖代谢酶活性的影响. 干旱区研究, 2021, 38(6): 1713-1721. |
| [89] |
Gao H, Zhang H F, Yuan S A, et al. Response of plant endogenous hormone to drought threat stress. Journal of Green Science and Technology, 2013(11): 5-7. |
| [90] |
高辉, 张红芳, 袁思安, 植物内源激素对干旱胁迫的响应研究. 绿色科技, 2013(11): 5-7. |
| [91] |
An Y Y, Liang Z S. Staged strategy of plants in response to drought stress. Chinese Journal of Applied Ecology, 2012, 23(10): 2907-2915. |
| [92] |
安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略. 应用生态学报, 2012, 23(10): 2907-2915. |
| [93] |
Wu R N, Shi F L, Xu B. Medicago ruthenica (L.) Sojak. cv. Zhilixing response and adaptation strategy to drought stress and rehydration. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1901-1912. |
| [94] |
乌日娜, 石凤翎, 徐舶. 直立型扁蓿豆对干旱胁迫和复水的响应及适应策略. 中国生态农业学报, 2020, 28(12): 1901-1912. |
自治区重点研发计划重点项目(2022CMG02011)
国家自然科学基金(32160406)
宁夏高等学校一流学科建设(草学学科)项目(NXYLXK2017A01)
/
| 〈 |
|
〉 |