准噶尔盆地沙质荒漠草地土壤pH分布特征及其环境影响因素分析
敬一胜 , 孙宗玖 , 刘慧霞 , 迪达尔·比苏力旦null , 李美莎 , 周晨烨 , 周磊 , 于冰洁 , 李有政 , 郑丽 , 阿斯太肯·居力海提null
草业学报 ›› 2025, Vol. 34 ›› Issue (07) : 54 -68.
准噶尔盆地沙质荒漠草地土壤pH分布特征及其环境影响因素分析
Soil pH distribution characteristics and environmental factors influencing it in sandy desert grassland in the Junggar Basin
为探究准噶尔盆地沙质荒漠草地土壤pH分布特征,采用路线调查结合典型样地布设确定136个样地,以0~100 cm各土层pH实测数据为依据,结合气象数据及“3S”技术,运用单因素方差分析、地统计学分析与地理探测器等方法,探讨土壤pH发生空间变异的主要环境影响因素。结果表明:0~100 cm各土层土壤pH为8.54~8.76,均值为8.66,且随土层深度增加土壤pH表现出上升趋势。小乔木类群土壤pH(8.71)显著高于灌木类群(8.54)1.02倍、半灌木类群(8.59)1.01倍(P<0.05)。碱性土(7.5<pH<8.5)主要分布于准噶尔盆地周缘吉木乃县北部、福海县南部,克拉玛依市北部等地区,强碱性土(pH>8.5)主要分布于阜康市、呼图壁县、玛纳斯县、富蕴县等地区。半方差变异分析可知,0~100 cm土层pH最佳模型的块金效应为49.91%,说明其空间变异由结构因素与随机因素共同影响。地理探测器分析表明,总体上影响土壤pH空间变异的主要环境因子依次为年均温度(0.159)、植被覆盖度(0.152)、雪水当量(0.085)、根部土壤湿度(0.076)、物种丰富度指数(0.066)。研究结果完善了准噶尔盆地沙质荒漠草地土壤pH数据库,进一步探明了土壤pH产生变异的主控因素,为沙质荒漠管理与生态恢复提供了理论依据。
The aim of this study was to explore the distribution characteristics of soil pH and the factors affecting it in sandy desert grassland in the Junggar Basin. First, 136 sample plots were selected and established by a route survey combined with a typical sample plot layout, and the pH of soil samples collected from 0 to 100 cm depth in each plot was measured. Environmental factors such as temperature, vegetation cover, and species richness were determined, and meteorological data were collected. The factors affecting the spatial variation of soil pH were explored on the basis of the environmental and meteorological data and “3S” technology, using one-way ANOVA, geostatistical analysis, and geographical detectors drawing on a range of remote sensing data and analytical tools. The results showed the range of soil pH in each soil layer from 0 to 100 cm was 8.54-8.76, and the average value was 8.66. The soil pH showed an upward trend as the soil depth increased. The soil pH of the small arbor group (8.71) was 1.02 times that of the shrub group (8.54) and 1.01 times that of the subshrub group (8.59) (P<0.05). Analyses of soil pH distribution showed that alkaline soil (pH 7.5-8.5) was mainly distributed in the northern part of Jimunai County, the southern part of Fuhai County, and the northern part of Karamay City around the Junggar Basi, and strongly alkaline soil (pH>8.5) was mainly distributed in Fukang City, Hutubi County, Manas County, Fuyun County, and other areas. Semi-variance variation analysis showed that the nugget effect of the optimal model of soil pH in the 0-100 cm soil layer was 49.91%, indicating that its spatial variation was affected by both structural factors and random factors. Geographic detector analysis showed that the main environmental factors contributing to the spatial variation of soil pH were mean average temperature (0.159), vegetation coverage (0.152), snow water equivalent (0.085), root soil moisture (0.076), and species richness index (0.066). The results of this study add new information about the distribution of soil pH to the database for sandy desert grassland in Junggar Basin, and reveal the main factors contributing to variations in soil pH. These findings provide a theoretical basis for sandy desert management and ecological restoration.
土壤pH / 空间分布 / 沙质荒漠草地 / 准噶尔盆地 / 地理探测器
soil pH / spatial distribution / sandy desert meadows / Junggar Basin / geographical detectors
| [1] |
Lindroos A J, Derome J, Raitio H, et al. Heavy metal concentrations in soil solution, soil and needles in a norway spruce stand on an acid sulphate forest soil. Water, Air, and Soil Pollution, 2007, 180(1/2/3/4): 155-170. |
| [2] |
Xue W, Bezemer M T, Berendse F. Soil heterogeneity and plant species diversity in experimental grassland communities: contrasting effects of soil nutrients and pH at different spatial scales. Plant and Soil, 2019, 442(1/2): 497-509. |
| [3] |
Zhang W, Li Q Q, Wang C Q, et al. Spatial variability of soil pH and its influence factors at a county scale in hilly area of Mid-Sichuan Basin-a case study from Renshou in Sichuan. Resources and Environment in the Yangtze Basin, 2015, 24(7): 1192-1199. |
| [4] |
张维, 李启权, 王昌全, 川中丘陵县域土壤pH空间变异及影响因素分析——以四川仁寿县为例. 长江流域资源与环境, 2015, 24(7): 1192-1199. |
| [5] |
Wu Z X, Zhou Y, Muhtar·Amat, et al. Spatial variability of soil pH value and its influencing factors in the soil layer of northwestern Hubei Province. Resources and Environment in the Yangtze Basin, 2020, 29(2): 488-498. |
| [6] |
吴正祥, 周勇, 木合塔尔·艾买提, 鄂西北山区耕层土壤pH值空间变异特征及其影响因素研究. 长江流域资源与环境, 2020, 29(2): 488-498. |
| [7] |
Wen H T, Dong Q Y, Wang P, et al. Spatial variation characteristics and influencing factors of soil pH value at the northern foot of Tongbai Mountain. Chinese Journal of Soil Science, 2023, 54(2): 295-305. |
| [8] |
温皓天, 董秋瑶, 王攀, 桐柏山北麓土壤pH值空间分布特征及其影响因素. 土壤通报, 2023, 54(2): 295-305. |
| [9] |
Chen Q X, Lu X H, Tu C L. Spatial variation and influencing factors of soil pH in Anshun City. Environmental Science, 2022, 43(4): 2124-2132. |
| [10] |
陈清霞, 陆晓辉, 涂成龙. 安顺市土壤pH空间变异及影响因素分析. 环境科学, 2022, 43(4): 2124-2132. |
| [11] |
Gao P, Yang X M, Li D N, et al. Distribution characteristics of soil pH in cultivated land in Qinling-Bashan area and its influencing factors. Journal of Agriculture, 2023, 13(8): 32-36. |
| [12] |
高鹏, 杨小敏, 李丹妮, 秦岭巴山区域耕地土壤pH分布特征及其影响因素. 农学学报, 2023, 13(8): 32-36. |
| [13] |
Huang H Q, Zhang H, Hu Z, et al. Spatial distribution and influencing factors of arable soil organic matter and pH in mountainous areas of Guizhou. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2473-2479. |
| [14] |
黄会前, 张慧, 胡震, 贵州山区耕地土壤有机质及pH的空间分布与影响因素研究. 西南农业学报, 2023, 36(11): 2473-2479. |
| [15] |
Deng Q, Fang H Y, Zhang Y Y, et al. Spatial variability of cropland soil pH and its influencing factors in Sichuan Basin. Soils, 2022, 54(6): 1283-1290. |
| [16] |
邓茜, 方红艳, 张元媛, 四川盆地耕地土壤pH空间变异特征及影响因素. 土壤, 2022, 54(6): 1283-1290. |
| [17] |
Palpurina S, Wagner V, Wehrden V H, et al. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 2017, 26(4): 425-434. |
| [18] |
Zhao X, He C, Liu W S, et al. Responses of soil pH to no-till and the factors affecting it: A global meta-analysis. Global Change Biology, 2021, 28(1): 154-166. |
| [19] |
Li J, Zhang L C, Zhang M Q, et al. Characteristics and prediction of topsoil acidification of latosolic red soil caused by long-term urea application. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2161-2171. |
| [20] |
李娟, 张立成, 章明清, 长期施用尿素降低赤红壤旱地耕层pH的特征与预测. 植物营养与肥料学报, 2022, 28(12): 2161-2171. |
| [21] |
Liang G H, Wu J P, Xiong X, et al. Responses of soil pH value and soil microbial biomass carbon and nitrogen to simulated acid rain in three successional subtropical forests at Dinghushan Nature Reserve. Ecology and Environmental Sciences, 2015, 24(6): 911-918. |
| [22] |
梁国华, 吴建平, 熊鑫, 鼎湖山不同演替阶段森林土壤pH值和土壤微生物量碳氮对模拟酸雨的响应. 生态环境学报, 2015, 24(6): 911-918. |
| [23] |
Li Z Y, Liu Z C, Yan C, et al. The biomass-diversity relationship depends upon soil pH variations in Inner Mongolian grasslands: Insight from comparison between gradient observations and manipulative experiments. Acta Prataculturae Sinica, 2020, 29(1): 38-49. |
| [24] |
李子雁, 刘尊驰, 鄢创, 内蒙古草原不同土壤pH条件下植物生物量和多样性的关系:样带调查和控制实验的比较研究. 草业学报, 2020, 29(1): 38-49. |
| [25] |
Xu P. Grassland resources and their utilization in Xinjiang. Urumqi: Xinjiang Science and Technology and Health Press, 1993. |
| [26] |
许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993. |
| [27] |
Diao M J, Xia C Z. Analysis on the change of vegetation growth in Junggar Basin during 1982-2013. Forest Resources Management, 2016(5): 39-46. |
| [28] |
刁鸣军, 夏朝宗. 1982—2013年准噶尔盆地植被长势变化分析. 林业资源管理, 2016(5): 39-46. |
| [29] |
Wang J P, Guo Z J, Huang J H, et al. Characteristics of spatio-temporal variation of NDVI in different ecological function zones in north Xinjiang in recent 30 years. Forest Resources Management, 2015(6): 64-70. |
| [30] |
王计平, 郭仲军, 黄继红, 北疆不同生态功能区近30年来植被盖度时空变化. 林业资源管理, 2015(6): 64-70. |
| [31] |
Yang J, Sun Z J, Chai Y. Effects of enclosure on vegetation characteristics and stability of sandy desert grassland. Chinese Journal of Grassland, 2017, 39(3): 65-71, 108. |
| [32] |
杨静, 孙宗玖, 柴艳. 封育对沙质荒漠草地植被特征及稳定性影响. 中国草地学报, 2017, 39(3): 65-71, 108. |
| [33] |
Yang J, Sun Z J, Bademu qiqige, et al. Effects of enclosure years on vegetation functional groups diversity and soil total nutrients characters of sandy desert grassland. Chinese Journal of Grassland, 2018, 40(4): 102-110. |
| [34] |
杨静, 孙宗玖, 巴德木其其格, 封育对草地植被功能群多样性及土壤养分特征的影响. 中国草地学报, 2018, 40(4): 102-110. |
| [35] |
Liu H X, Sun Z J, Shi Y K, et al. Distribution characteristics of soil organic carbon in Haloxylon sandy desert in Junggar Basin. Journal of Agricultural Science and Technology, 2021, 23(11): 147-155. |
| [36] |
刘慧霞, 孙宗玖, 石宇堃, 准噶尔盆地梭梭沙质荒漠土壤有机碳分布特征的研究. 中国农业科技导报, 2021, 23(11): 147-155. |
| [37] |
Liu H X, Sun Z J, Cui Y X, et al. Spatial distribution pattern and impact factors of soil bulk density in desert grassland of northern Xinjiang. Chinese Journal of Grassland, 2021, 43(2): 82-91. |
| [38] |
刘慧霞, 孙宗玖, 崔雨萱, 新疆北疆荒漠草地土壤容重空间分布格局及其影响因素. 中国草地学报, 2021, 43(2): 82-91. |
| [39] |
Zhang L, Lv G H, Jiang L M, et al. Analysis on soil driving force affecting biomass distribution of desert plants in Ebinur Lake basin. Journal of Plant Resources and Environment, 2019, 28(3): 12-18. |
| [40] |
张磊, 吕光辉, 蒋腊梅, 影响艾比湖流域荒漠植物生物量分布的土壤驱动力分析. 植物资源与环境学报, 2019, 28(3): 12-18. |
| [41] |
Zheng L L, Xiong H G, Xia Q R, et al. Physical and chemical differences of 11 vegetation-soil types in southern Gurbantunggut Desert. Chinese Agricultural Science Bulletin, 2013, 29(35): 245-253. |
| [42] |
郑丽丽, 熊黑钢, 夏倩柔, 古尔班通沙漠南缘11种植被的土壤理化差异性研究. 中国农学通报, 2013, 29(35): 245-253. |
| [43] |
Marhaba·Nigat, Dai Y, Shi Q D, et al. Physical and chemical properties of soil at southeastern edge of Anabasis salsa in Junggar Basin. Journal of Irrigation and Drainage, 2019, 38(7): 38-44. |
| [44] |
麦尔哈巴·尼加提, 戴岳, 师庆东, 准噶尔盆地东南缘荒漠灌丛盐生假木贼周围土壤理化性质研究. 灌溉排水学报, 2019, 38(7): 38-44. |
| [45] |
Liu H X, Dong Y Q, Cui Y X, et al. Environmental factors influencing soil organic carbon and its characteristics in desert grassland in Altay, Xinjiang. Acta Prataculturae Sinica, 2021, 30(10): 41-52. |
| [46] |
刘慧霞, 董乙强, 崔雨萱, 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析. 草业学报, 2021, 30(10): 41-52. |
| [47] |
Bao S D. Soil agrochemical analysis (The Third Edition). Beijing: China Agriculture Press, 2005. |
| [48] |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2005. |
| [49] |
Li X, Xiao J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sensing, 2019, 11(5): 517. |
| [50] |
Hegde R, Bardhan G, Niranjana V K, et al. Spatial variability and mapping of selected soil properties in Kaligaudanahalli microwatershed, Gundlupet Taluk, Chamarajanagar district, under hot semi arid agrosubregion of Central Karnataka Plateau, India. SN Applied Sciences, 2019, 1(6): 1-15. |
| [51] |
Bhattacharjee S, Mitra P, Ghosh K S. Spatial interpolation to predict missing attributes in GIS using semantic kriging. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4771-4780. |
| [52] |
Jia Z Y, Zhang J H, Ding S Y, et al. Spatial variation of soil phosphorus in flooded area of the Yellow River based on GIS and geo-statistical methods: A case study in Zhoukou City, Henan, China. Chinese Journal of Applied Ecology, 2016, 27(4): 1211-1220. |
| [53] |
贾振宇, 张俊华, 丁圣彦, 基于GIS和地统计学的黄泛区土壤磷空间变异——以周口为例. 应用生态学报, 2016, 27(4): 1211-1220. |
| [54] |
Li Z H, Li S Y, Li B W, et al. Spatial variation of soil chemical properties of longitudinal dunes with different vegetation coverage levels. Arid Zone Research, 2020, 37(1): 160-167. |
| [55] |
李浙华, 李生宇, 李丙文, 不同植被覆盖度沙垄土壤化学性质的空间分异. 干旱区研究, 2020, 37(1): 160-167. |
| [56] |
Medeiros S A, Drezner D T. Vegetation, climate, and soil relationships across the Sonoran Desert. Ecoscience, 2012, 19(2): 148-160. |
| [57] |
Li C J, Lei J Q, Xu X W, et al. Spatial pattern for soil water and chemical properties in Gurbantunggut Desert. Acta Ecologica Sinica, 2014, 34(15): 4380-4389. |
| [58] |
李从娟, 雷加强, 徐新文, 古尔班通古特沙漠土壤水分与化学性质的空间分布. 生态学报, 2014, 34(15): 4380-4389. |
| [59] |
Pei S, Fu H, Wan C, et al. Observations on changes in soil properties in grazed and nongrazed areas of Alxa Desert Steppe, Inner Mongolia. Arid Land Research and Management, 2006, 20(2): 161-175. |
| [60] |
Wezel A, Rajot J, Herbrig C. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments, 2000, 44(4): 383-398. |
| [61] |
Liu Z T, Cui Y Y, Bai L, et al. Effects of simulated precipitation on aboveground and belowground biomass and their allocation proportion of plant community in desert steppe. Acta Agrestia Sinica, 2023, 31(6): 1632-1639. |
| [62] |
刘倬彤, 崔媛媛, 白柳, 模拟降水变化对荒漠草原地上、地下生物量及其分配比例的影响. 草地学报, 2023, 31(6): 1632-1639. |
| [63] |
Liu M, Ma Z L. Responses of biomass allocation to simulated warming in an alpine scrubland of eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2021, 41(4): 1421-1430. |
| [64] |
刘美, 马志良. 青藏高原东部高寒灌丛生物量分配对模拟增温的响应. 生态学报, 2021, 41(4): 1421-1430. |
| [65] |
Zhou Z B, Xu X W. Absorption characteristics of ions in three species of shrubs of the artificially-planted greenbelts in the hinterland of Taklamakan Desert. Arid Zone Research, 2002, 19(1): 49-52. |
| [66] |
周智彬, 徐新文. 塔克拉玛干沙漠腹地人工绿地三种灌木的离子吸收特性. 干旱区研究, 2002, 19(1): 49-52. |
| [67] |
Li C J, Li Y, Ma J. Scale characteristics of spatial heterogeneity of soil chemical properties in Gurbantunggut Desert. Acta Pedologica Sinica, 2011, 48(2): 302-310. |
| [68] |
李从娟, 李彦, 马健. 古尔班通古特沙漠土壤化学性质空间异质性的尺度特征. 土壤学报, 2011, 48(2): 302-310. |
| [69] |
Wang W F, Liu R T, Guo Z X, et al. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southeastern area of Tengger Desert. Journal of Desert Research, 2021, 41(1): 209-218. |
| [70] |
王文帆, 刘任涛, 郭志霞, 腾格里沙漠东南缘固沙灌丛林土壤理化性质及分形维数. 中国沙漠, 2021, 41(1): 209-218. |
| [71] |
Liu G M, Yang J S, Li D S. Evaporation regularity and its relationship with soil salt. Acta Pedologica Sinica, 2002, 39(3): 384-389. |
| [72] |
刘广明, 杨劲松, 李冬顺. 地下水蒸发规律及其与土壤盐分的关系. 土壤学报, 2002, 39(3): 384-389. |
| [73] |
Department of Agriculture and Rural Affairs of Xinjiang Uygur Autonomous Region. Xinjiang soil. Beijing: Science Press, 1996. |
| [74] |
新疆维吾尔自治区农业农村厅. 新疆土壤. 北京: 科学出版社, 1996. |
| [75] |
Zuo L N, Chen J, Zhang H, et al. Patterns and drivers of soil pH on the Xinjiang temperate steppe. Pratacultural Science, 2022, 39(7): 1341-1353. |
| [76] |
左李娜, 陈静, 张慧, 新疆温性草原土壤pH特征及影响因素. 草业科学, 2022, 39(7): 1341-1353. |
| [77] |
Huang P Y, Pan W B, Li H T, et al. The feedback of desert plants on the spatial pattern of snowmelt in Zhunger Basin. Chinese Journal of Plant Ecology, 1992, 16(4): 346-353. |
| [78] |
黄培祐, 潘伟斌, 李海涛, 准噶尔盆地荒漠灌丛对融雪水空间分布的反馈初探. 植物生态学报, 1992, 16(4): 346-353. |
| [79] |
Zhou H F, Li Y, Tang Y, et al. The Characteristics of the snow-cover and snowmelt water storage in Gurbantunggut Desert. Arid Zone Research, 2009, 26(3): 312-317. |
| [80] |
周宏飞, 李彦, 汤英, 古尔班通古特沙漠的积雪及雪融水储存特征. 干旱区研究, 2009, 26(3): 312-317. |
| [81] |
Hao X T, Huang Y R, Ma Y B, et al. Study on soil moisture dynamics in growing season of sand-fixing Haloxylon ammodendron forest in Ulan Buhe Desert. Journal of Agricultural Science and Technology, 2023, 25(7): 187-196. |
| [82] |
郝需婷, 黄雅茹, 马迎宾, 乌兰布和沙漠固沙梭梭林生长季土壤水分动态研究. 中国农业科技导报, 2023, 25(7): 187-196. |
| [83] |
Xi J Q, Yang Z H, Guo S J, et al. Effects of Haloxylon ammodendron planting on soil physico-chemical properties and soil microorganisms in sandy dunes. Acta Prataculturae Sinica, 2015, 24(5): 44-52. |
| [84] |
席军强, 杨自辉, 郭树江, 人工梭梭林对沙地土壤理化性质和微生物的影响. 草业学报, 2015, 24(5): 44-52. |
| [85] |
Garner W, Steinberger Y. A proposed mechanism for the formation of ‘fertile islands’ in the desert ecosystem. Journal of Arid Environments, 1989, 16(3): 257-262. |
| [86] |
Chen F, Pan Z, Zhai Y M, et al. The effect of erosive precipitation on physical and chemical properties of soil in different slopes. Soil and Water Conservation in China, 2024(3): 55-60. |
| [87] |
陈凤, 潘政, 翟亚明, 不同坡度下侵蚀性降水对土壤理化性质的影响. 中国水土保持, 2024(3): 55-60. |
| [88] |
Zhang X L, Feng M D, He B H, et al. Soil infiltration characteristics and suitable models under different land use types in Karst Trough-Valley region. Research of Soil and Water Conservation, 2024, 31(4): 34-41. |
| [89] |
张贤林, 冯梦蝶, 何丙辉, 喀斯特槽谷区不同土地利用方式下土壤入渗特征及适宜模型. 水土保持研究, 2024, 31(4): 34-41. |
| [90] |
Zhang F, Li Y B, Wang D F, et al. Analysis of distribution patterns and spatial variability of soil salinity affecting factors in topsoil layer of salinized soil in Jinghe Oasis. Journal of Ecology and Rural Environment, 2018, 34(1): 64-73. |
| [91] |
张飞, 李怡博, 王东芳, 精河绿洲盐渍土表层土壤盐分因子的空间变异及分布格局. 生态与农村环境学报, 2018, 34(1): 64-73. |
| [92] |
Farifteh J, Farshad A, George R. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 2005, 130(3): 191-206. |
| [93] |
Ping X Y, Lin C C, Bai Y, et al. The ecological effects of planting Apocynum venetum in the plain desert of the Altay Region, Xinjiang Province. Acta Prataculturae Sinica, 2014, 23(2): 49-58. |
| [94] |
平晓燕, 林长存, 白宇, 新疆阿勒泰平原荒漠罗布麻种植区的生态效益评价. 草业学报, 2014, 23(2): 49-58. |
| [95] |
Zhang Y, Chu X Z, Yang S M, et al. Climate change in north Xinjiang in recent 56 years. Arid Zone Research, 2019, 36(1): 212-219. |
| [96] |
张扬, 楚新正, 杨少敏, 近56 a新疆北部地区气候变化特征. 干旱区研究, 2019, 36(1): 212-219. |
| [97] |
Hu L Q, Huang W J, Yin K Q, et al. Estimation of snow water resources and its distribution in Xinjiang. Advances in Water Science, 2013, 24(3): 326-332. |
| [98] |
胡列群, 黄慰军, 殷克勤, 新疆冬季雪水资源估算及分布特征. 水科学进展, 2013, 24(3): 326-332. |
新疆维吾尔自治区高校基本科研业务费(XJEDU2022J006)
新疆维吾尔自治区重点实验室开放课题(2022D04003)
/
| 〈 |
|
〉 |