紫花苜蓿在干旱胁迫下的产量损失与抗旱性遗传研究进展
Research progress on yield loss under drought stress and drought resistance genetics of alfalfa (Medicago sativa)
紫花苜蓿是种植面积最广的多年生豆科饲草,由于其产量高、品质优良而被誉为“牧草之王”。干旱胁迫会对紫花苜蓿生长发育的各个阶段造成严重影响,导致产量损失。干旱胁迫对紫花苜蓿发芽率、分枝形成、茎伸长、叶片发育、根系发育等造成影响,可导致饲草产量减少70%以上。利用分子育种加速培育耐旱性苜蓿新品种是应对干旱胁迫的有效策略。然而紫花苜蓿抗旱性相关的遗传研究基础相对薄弱。前期研究主要集中于转基因和同源克隆。随着紫花苜蓿基因组的发布和测序技术的发展,全基因组关联分析和以转录组测序为代表的组学技术在紫花苜蓿抗旱相关基因的鉴定和抗旱遗传机制的解析中发挥了越来越重要的作用。本研究全面总结了干旱胁迫对紫花苜蓿产量的影响,并概述了近年来在紫花苜蓿抗旱性遗传研究领域取得的进展,旨在为紫花苜蓿抗旱育种提供参考依据。
Alfalfa (Medicago sativa) is the most widely cultivated perennial leguminous forage crop, acclaimed as the “king of forages” because of its high yield and superior quality. Drought stress has a significant impact on the growth and development of alfalfa, resulting in substantial yield reductions. It influences the germination rate, branch formation, stem elongation, leaf growth, and root development, potentially causing large decreases (>70%) in forage yield. Accelerating the breeding of drought-tolerant alfalfa varieties through molecular breeding is an effective strategy to mitigate the effects of drought stress on this forage crop. However, the genetic foundation of drought resistance in alfalfa remains largely unexplored. Previous research on alfalfa has mainly concentrated on transgenic methods and homologous cloning techniques. With the release of the alfalfa genome and advances in sequencing technology, genome-wide association studies and omics technologies based on transcriptome sequencing have played an increasingly important role in identifying drought-related genes and elucidating drought resistance mechanisms in alfalfa. This paper comprehensively summarizes the effects of drought stress on alfalfa yield, outlines recent advances in research on the genetic basis of drought resistance in alfalfa, and provides a reference for the breeding of drought-resistant alfalfa varieties.
alfalfa / drought resistance / genome-wide association studies / yield
| [1] |
Nadeem M, Li J J, Yahya M, et al. Research progress and perspective on drought stress in legumes: A review. International Journal of Molecular Sciences, 2019, 20(10): 2541. |
| [2] |
Inès S, Talbi O, Nasreddine Y, et al. Drought tolerance traits in Medicago species: A review. Arid Land Research Management, 2022, 36(1): 67-83. |
| [3] |
Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 2005, 24(1): 23-58. |
| [4] |
Kim W, Iizumi T, Nishimori M. Global patterns of crop production losses associated with droughts from 1983 to 2009. Journal of Applied Meteorology Climatology, 2019, 58(6): 1233-1244. |
| [5] |
Matiu M, Ankerst D P, Menzel A. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS One, 2017, 12(5): e0178339. |
| [6] |
Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368(6488): 266-269. |
| [7] |
Comas L H, Becker S R, Cruz V M V, et al. Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 2013, 4: 442. |
| [8] |
Yadav B, Jogawat A, Gnanasekaran P, et al. An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. Plant Gene, 2021, 25: 100264. |
| [9] |
Li Y P, Ye W, Wang M, et al. Climate change and drought: a risk assessment of crop-yield impacts. Climate Research, 2009, 39(1): 31-46. |
| [10] |
Yu L X, Kole C. The alfalfa genome. Cham, Switzerland: Springer, 2021. |
| [11] |
Radović J, Sokolović D, Marković J. Alfalfa-most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 2009, 25(5/6): 465-475. |
| [12] |
Bora K S, Sharma A. Phytochemical and pharmacological potential of Medicago sativa: A review. Pharmaceutical Biology, 2011, 49(2): 211-220. |
| [13] |
Li A, Liu A, Du X, et al. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Horticulture Research, 2020, 7: 194. |
| [14] |
Bai Z, Ma W, Ma L, et al. China’s livestock transition: Driving forces, impacts, and consequences. Science Advances, 2018, 4(7): eaar8534. |
| [15] |
Wang Q B, Zou Y. China’s alfalfa market and imports: Development, trends, and potential impacts of the US-China trade dispute and retaliations. Journal of Integrative Agriculture, 2020, 19(4): 1149-1158. |
| [16] |
Ashrafi M, Azimi-Moqadam M R, Moradi P, et al. Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiology and Biochemistry, 2018, 132: 391-399. |
| [17] |
Kumar S. Biotechnological advancements in alfalfa improvement. Journal of Applied Genetics, 2011, 52(2): 111-124. |
| [18] |
Gall H L, Philippe F, Domon J M, et al. Cell wall metabolism in response to abiotic stress. Plants, 2015, 4(1): 112-166. |
| [19] |
Zhang C, Shi S, Liu Z, et al. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. Journal of Plant Physiology, 2019, 232: 226-240. |
| [20] |
Kapoor D, Bhardwaj S, Landi M, et al. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 2020, 10(16): 5692. |
| [21] |
Zhang H, Zhu J, Gong Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23(2): 104-119. |
| [22] |
Davis R, Earl H, Timper P. Effect of simultaneous water deficit stress and Meloidogyne incognita infection on cotton yield and fiber quality. Journal of Nematology, 2014, 46(2): 108. |
| [23] |
Ranjan A, Sinha R, Singla-Pareek S L, et al. Shaping the root system architecture in plants for adaptation to drought stress. Physiologia Plantarum, 2022, 174(2): e13651. |
| [24] |
Maqbool S, Hassan M A, Xia X, et al. Root system architecture in cereals: progress, challenges and perspective. The Plant Journal, 2022, 110(1): 23-42. |
| [25] |
Rogers E D, Benfey P N. Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology, 2015, 32: 93-98. |
| [26] |
Seo D H, Seomun S, Choi Y D, et al. Root development and stress tolerance in rice: the key to improving stress tolerance without yield penalties. International Journal of Molecular Sciences, 2020, 21(5): 1807. |
| [27] |
Jeong J S, Kim Y S, Redillas M C, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal, 2013, 11(1): 101-114. |
| [28] |
Castroluna A, Ruiz O, Quiroga A, et al. Effects of salinity and drought stress on germination, biomass and growth in three varieties of Medicago sativa L. Avances en Investigación Agropecuaria, 2014, 18(1): 39-50. |
| [29] |
Slama I, Tayachi S, Jdey A, et al. Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: Growth, water relations, osmolyte accumulation and lipid peroxidation. African Journal of Biotechnology, 2011, 10(72): 16250-16259. |
| [30] |
Riasat M, Saed-Mouchehsi A, Jafari A A. Effect of drought stress levels on seedling morpho-physiological traits of alfalfa (Medicago sativa) populations grown in glasshouse. Journal of Rangeland Science, 2020, 10(1): 86-97. |
| [31] |
Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. |
| [32] |
张翠梅, 师尚礼, 刘珍, 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. |
| [33] |
Lamb J, Barnes D, Henjum K J C S. Gain from two cycles of divergent selection for root morphology in alfalfa. Crop Science, 1999, 39(4): 1026-1035. |
| [34] |
Tang L, Cai H, Ji W, et al. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 2013, 71: 22-30. |
| [35] |
Tang L, Cai H, Zhai H, et al. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell, Tissue and Organ Culture, 2014, 118: 77-86. |
| [36] |
Aung B, Gruber M Y, Amyot L, et al. MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnology Journal, 2015, 13(6): 779-790. |
| [37] |
Arshad M, Feyissa B A, Amyot L, et al. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Science, 2017, 258: 122-136. |
| [38] |
Feyissa B A, Arshad M, Gruber M Y, et al. The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa. BMC Plant Biology, 2019, 19(1): 1-19. |
| [39] |
Safarnejad A J P J B. Morphological and biochemical response to osmotic stress in alfalfa (Medicago sativa L.). Pakistan Journal of Botany, 2008, 40(2): 735-746. |
| [40] |
Maghsoodi M, Razmjoo J. Identify physiological markers for drought tolerance in alfalfa. Agronomy Journal, 2015, 107(1): 149-157. |
| [41] |
Zhang T, Kesoju S, Greene S L, et al. Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance. Genetic Resources and Crop Evolution, 2018, 65: 471-484. |
| [42] |
Yu L X. Identification of single-nucleotide polymorphic loci associated with biomass yield under water deficit in alfalfa (Medicago sativa L.) using genome-wide sequencing and association mapping. Frontiers in Plant Science, 2017, 8: 1152. |
| [43] |
Afsharmanesh G. Study of some morphological traits and selection of drought-resistant alfalfa cultivars (Medicago sativa L.) in Jiroft, Iran. Plant Ecophysiology (Jiroft Branch), 2009, 1(3): 109-118. |
| [44] |
Hamidi H, Safarnejad A. Effect of drought stress on alfalfa cultivars (Medicago sativa L.) in germination stage. American-Eurasian Journal of Agricultural and Environmental Sciences, 2010, 8(6): 705-709. |
| [45] |
Hanson A, Xu L, Johnson P S, et al. Identification and characterization of drought-tolerant alfalfa (Medicago sativa subsp. falcata) germplasm. Proceedings of the South Dakota Academy of Science, 2015, 94: 263-272. |
| [46] |
Gorai M, Hachef A, Neffati M. Differential responses in growth and water relationship of Medicago sativa (L.) cv. Gabès and Astragalus gombiformis (Pom.) under water-limited conditions. Emirates Journal of Food and Agriculture, 2010, 7(1): 1-12. |
| [47] |
Annicchiarico P, Pecetti L, Tava A. Physiological and morphological traits associated with adaptation of lucerne (Medicago sativa) to severely drought-stressed and to irrigated environments. Annals of Applied Biology, 2013, 162(1): 27-40. |
| [48] |
Farissi M, Bouizgaren A, Faghire M, et al. Agrophysiological and biochemical properties associated with adaptation of Medicago sativa populations to water deficit. Turkish Journal of Botany, 2013, 37(6): 1166-1175. |
| [49] |
Moghaddam A, Vollmann J, Wanek W, et al. Suitability of drought tolerance indices for selecting alfalfa (Medicago sativa L.) genotypes under organic farming in Austria. Crop Breeding Journal, 2012, 2(2): 79-89. |
| [50] |
Benabderrahim M, Hamza H, Haddad M, et al. Assessing the drought tolerance variability in Mediterranean alfalfa (Medicago sativa L.) genotypes under arid conditions. Plant Biosystems, 2013, 149(2): 395-403. |
| [51] |
Boe A, Kephart K D, Berdahl J D, et al. Breeding alfalfa for semiarid regions in the northern Great Plains: History and additional genetic evaluations of novel germplasm. Agronomy, 2020, 10(11): 1686. |
| [52] |
Shi S, Nan L, Smith K F. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy, 2017, 7(1): 1. |
| [53] |
Yang Q C. Guide for alfalfa planting zone and cultivar. Beijing: China Agricultural University Press, 2012. |
| [54] |
杨青川. 苜蓿种植区划及品种指南. 北京: 中国农业大学出版社, 2012. |
| [55] |
Li X, Brummer E C. Applied genetics and genomics in alfalfa breeding. Agronomy, 2012, 2(1): 40-61. |
| [56] |
Volenec J, Cunningham S, Haagenson D, et al. Physiological genetics of alfalfa improvement: past failures, future prospects. Field Crops Research, 2002, 75(2/3): 97-110. |
| [57] |
Zhang T, Yu L X, Zheng P, et al. Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS One, 2015, 10(9): e0138931. |
| [58] |
Lin S, Medina C A, Boge B, et al. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biology, 2020, 20(1): 1-18. |
| [59] |
Shi K, Liu J, Liang H, et al. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation. Journal of Integrative Plant Biology, 2024, 66(4): 683-699. |
| [60] |
Liu X P, Hawkins C, Peel M D, et al. Genetic loci associated with salt tolerance in advanced breeding populations of tetraploid alfalfa using genome‐wide association studies. The Plant Genome, 2019, 12(1): 180026. |
| [61] |
Long R C, Zhang F, Zhang Z W, et al. Genome assembly of alfalfa cultivar Zhongmu-4 and identification of SNPs associated with agronomic traits. Genomics, Proteomics and Bioinformatics, 2022, 20(1): 14-28. |
| [62] |
Chen H, Zeng Y, Yang Y, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. |
| [63] |
Shen C, Du H, Chen Z, et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant, 2020, 13(9): 1250-1261. |
| [64] |
Bao A K, Wang S M, Wu G Q, et al. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science, 2009, 176(2): 232-240. |
| [65] |
Liu L B, Bao A K, Li H J, et al. Overexpression of ZxABCG11 from Zygophyllum xanthoxylum enhances tolerance to drought and heat in alfalfa by increasing cuticular wax deposition. The Crop Journal, 2023, 11(4): 1140-1151. |
| [66] |
Zheng G, Fan C, Di S, et al. Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2017, 8: 316380. |
| [67] |
Zhang J Y, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). The Plant Journal, 2005, 42(5): 689-707. |
| [68] |
Jiang Q, Zhang J Y, Guo X, et al. Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. International Journal of Plant Sciences, 2009, 170(8): 969-978. |
| [69] |
Zhou C, Ma Z, Zhu L, et al. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.). Genetics and Molecular Research, 2015, 14: 17204-17218. |
| [70] |
Zhang J, Duan Z, Zhang D, et al. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochemical and Biophysical Research Communications, 2016, 472(1): 75-82. |
| [71] |
Li H, Wang Z, Ke Q, et al. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiology and Biochemistry, 2014, 85: 31-40. |
| [72] |
Li Y, Sun Y, Yang Q, et al. Isolation and characterization of a gene from Medicago sativa L., encoding a bZIP transcription factor. Molecular Biology Reports, 2013, 40(2): 1227-1239. |
| [73] |
Wang Y X. Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress. Molecular Biology Reports, 2013, 40(11): 6451-6458. |
| [74] |
Li Z Y, Long R C, Zhang T J, et al. Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L. Molecular Biology Reports, 2016, 43(8): 815-826. |
| [75] |
Zhang Z, Wang Y, Chang L, et al. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Reports, 2016, 35(2): 439-453. |
| [76] |
Li Z, Long R, Zhang T, et al. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). Journal of Plant Research, 2017, 130(2): 387-396. |
| [77] |
Jia H, Wang X, Shi Y, et al. Overexpression of Medicago sativa LEA 4-4 can improve the salt, drought, and oxidation resistance of transgenic Arabidopsis. PLoS One, 2020, 15(6): e0234085. |
| [78] |
Du B, Chen N, Song L, et al. Alfalfa (Medicago sativa L.) MsCML46 gene encoding calmodulin-like protein confers tolerance to abiotic stress in tobacco. Plant Cell Reports, 2021, 40(10): 1907-1922. |
| [79] |
Yang M, Duan X, Wang Z, et al. Overexpression of a voltage-dependent anion-selective channel (VDAC) protein-encoding gene, MsVDAC, from Medicago sativa confers cold and drought tolerance to transgenic tobacco. Genes, 2021, 12(11): 1706. |
| [80] |
Wen W, Wang R, Su L, et al. MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.). Environmental and Experimental Botany, 2021, 184: 104373. |
| [81] |
Lv A, Su L, Fan N, et al. The MsDHN-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. Plant Biotechnology Journal, 2023, 22(5): 1132-1145. |
| [82] |
Gou J, Debnath S, Sun L, et al. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnology Journal, 2018, 16(4): 951-962. |
| [83] |
Singer S D, Burton Hughes K, Subedi U, et al. The CRISPR/Cas9-mediated modulation of squamosa promoter-binding protein-like 8 in alfalfa leads to distinct phenotypic outcomes. Frontiers in Plant Science, 2021, 12: 774146. |
| [84] |
Luo D, Zhang X, Liu J, et al. Drought-induced unknown protein 1 positively modulates drought tolerance in cultivated alfalfa (Medicago sativa L.). The Crop Journal, 2023, 11(1): 57-70. |
| [85] |
Luo D, Liu J, Wu Y, et al. NUCLEAR TRANSPORT FACTOR 2-LIKE improves drought tolerance by modulating leaf water loss in alfalfa (Medicago sativa L.). The Plant Journal, 2022, 112(2): 429-450. |
| [86] |
Waheed S, Zeng L. The critical role of miRNAs in regulation of flowering time and flower development. Genes, 2020, 11(3): 319. |
| [87] |
Singroha G, Sharma P, Sunkur R. Current status of microRNA-mediated regulation of drought stress responses in cereals. Physiologia Plantarum, 2021, 172(3): 1808-1821. |
| [88] |
Li Y, Wan L, Bi S, et al. Identification of drought-responsive microRNAs from roots and leaves of alfalfa by high-throughput sequencing. Genes, 2017, 8(4): 119. |
| [89] |
Arshad M, Gruber M Y, Hannoufa A. Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Scientific Reports, 2018, 8(1): 9363. |
| [90] |
Gao R, Austin R S, Amyot L, et al. Comparative transcriptome investigation of global gene expression changes caused by miR156 overexpression in Medicago sativa. BMC Genomics, 2016, 17(1): 658. |
| [91] |
Hanly A, Karagiannis J, Lu Q S M, et al. Characterization of the role of SPL9 in drought stress tolerance in Medicago sativa. International Journal of Molecular Sciences, 2020, 21(17): 6003. |
| [92] |
Suárez R, Calderón C, Iturriaga G. Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Science, 2009, 49(5): 1791-1799. |
| [93] |
Shi H, He X, Zhao Y, et al. Constitutive expression of a group 3 LEA protein from Medicago falcata (MfLEA3) increases cold and drought tolerance in transgenic tobacco. Plant Cell Reports, 2020, 39(7): 851-860. |
| [94] |
Wang Z, Li H, Ke Q, et al. Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiology and Biochemistry, 2014, 84: 67-77. |
| [95] |
Wang Z, Su G, Li M, et al. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiology and Biochemistry, 2016, 109: 199-208. |
| [96] |
Wang Z, Ke Q, Kim M D, et al. Transgenic alfalfa plants expressing the sweetpotato orange gene exhibit enhanced abiotic stress tolerance. PLoS One, 2015, 10(5): e0126050. |
| [97] |
Duan Z, Zhang D, Zhang J, et al. Co-transforming bar and CsALDH genes enhanced resistance to herbicide and drought and salt stress in transgenic alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2015, 6: 1115. |
| [98] |
Ma J, Qiu D, Gao H, et al. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa. BMC Plant Biology, 2020, 20(1): 226. |
| [99] |
Naish M, Alonge M, Wlodzimierz P, et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science, 2021, 374(6569): eabi7489. |
| [100] |
Song J M, Xie W Z, Wang S, et al. Two gap-free reference genomes and a global view of the centromere architecture in rice. Molecular Plant, 2021, 14(10): 1757-1767. |
| [101] |
Chen J, Wang Z, Tan K, et al. A complete telomere-to-telomere assembly of the maize genome. Nature Genetics, 2023, 55(7): 1221-1231. |
| [102] |
Schreiber M, Jayakodi M, Stein N, et al. Plant pangenomes for crop improvement, biodiversity and evolution. Nature Reviews Genetics, 2024, 25(8): 563-577. |
| [103] |
Zhou Y, Zhang Z, Bao Z, et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature, 2022, 606(7914): 527-534. |
| [104] |
Guo J, Cao K, Deng C, et al. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biology, 2020, 21(1): 258. |
| [105] |
Yang L, Yang Y, Huang L, et al. From single- to multi-omics: future research trends in medicinal plants. Briefings in Bioinformatics, 2023, 24(1): bbac485. |
| [106] |
Wang M, Wang Y, Li X, et al. Integration of metabolomics and transcriptomics reveals the regulation mechanism of the phenylpropanoid biosynthesis pathway in insect resistance traits in Solanum habrochaites. Horticulture Research, 2024, 11(2): uhad277. |
| [107] |
Kuang L, Yan T, Gao F, et al. Multi-omics analysis reveals differential molecular responses to cadmium toxicity in rice root tip and mature zone. Journal of Hazardous Materials, 2024, 462: 132758. |
| [108] |
Gao R, Feyissa B A, Croft M, et al. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta, 2018, 247(4): 1043-1050. |
| [109] |
Zhao H, Zhao S, Cao Y, et al. Development of a single transcript CRISPR/Cas9 toolkit for efficient genome editing in autotetraploid alfalfa. The Crop Journal, 2024, 12(3): 788-795. |
中国农业科学院科技创新工程(ASTIP-IAS14)
/
| 〈 |
|
〉 |