籽实青贮的研究与利用进展
Progress in research and utilization of grain silage
随着城乡居民生活水平的不断提升,农产品消费结构发生显著变化,肉类消费比重逐年攀升,而口粮作物占比下降。为满足消费需求的转变,农业生产方式亟待调整,饲料资源的高效利用成为关键。籽实青贮作为一种有效的籽实饲料保存方法,具备高干物质回收率、节约劳动力、减少能源消耗的优势,成为缓解饲料资源紧缺现状的重要途径。本研究基于国内外籽实青贮的文献及团队的实践经验,综合分析了籽实青贮的发酵品质影响因素,包括收获期、含水量、破碎粒度、添加剂及贮藏时长,探讨了其在畜禽饲养中的利用价值,并展望了籽实青贮技术与现代农业科技体系融合的前景。本研究不仅为优质籽实青贮的调制和利用提供了理论支持和实践指导,还为保障国家粮食安全提供了方法和策略。
With the ongoing improvement of living standards of urban and rural residents, the consumption pattern of agricultural products has undergone significant changes. Meat consumption has been increasing annually, while the per capita consumption of staple crops has declined. To meet the changing consumer demand, patterns of agricultural production need to be urgently adjusted, and the efficient utilization of livestock feed resources has emerged as a key component for change. Grain ensiling is an efficacious method for the conservation of feed grains, and offers many advantages, such as a high nutrient dry matter recovery rate, reduced labor requirement, and reduced energy consumption. Thus, grain silage provides an important option to address scarcity of feed resources for livestock. Drawing on both the research literature on grain silage and the practical experience of our research team, this study comprised an in-depth analysis of the factors affecting the fermentation quality of grain silages, including harvesting time, moisture content, crushed particle size, role of additives, and storage duration. Our study also explored the utilization and feed value of grain silage in livestock and poultry rearing and the potential for integrating grain silage technology into modern agricultural systems. Therefore, this study both provides theoretical support and practical guidance for the preparation and utilization of high-quality grain silage, and also addresses the need to identify methods and strategies for ensuring national food security.
grain / silage / fermentation quality / feeding value
| [1] |
Zhang C, Zhou Z. An analysis of China’s grain production and demand situation in the medium and long term from the perspective of population structure transition and policy suggestions. Macroeconomics, 2022(12): 126-139, 167. |
| [2] |
张琛, 周振. 人口结构转型视角下中长期中国粮食产需形势分析与政策建议. 宏观经济研究, 2022(12): 126-139, 167. |
| [3] |
Fan Z Y, Sun Y S. Big food view: Scientific connotation, value implications, and practical requirements. Journal of Northwest A&F University (Social Science Edition), 2023, 23(6): 68-75. |
| [4] |
樊志远, 孙云舒. 论大食物观的科学内涵、价值意蕴与实践要求. 西北农林科技大学学报(社会科学版), 2023, 23(6): 68-75. |
| [5] |
Tan G W, Wang X D, Wang J M, et al. National food security strategy in the new situation. Strategic Study of CAE, 2023, 25(4): 1-13. |
| [6] |
谭光万, 王秀东, 王济民, 新形势下国家食物安全战略研究. 中国工程科学, 2023, 25(4): 1-13. |
| [7] |
Chen W Z. Study on wet storage and feeding value of cereal abroad. Feed Research, 1979(6): 40-42. |
| [8] |
陈唯真. 国外谷物湿贮与饲用价值的研究. 饲料研究, 1979(6): 40-42. |
| [9] |
Алешина И М, Chen Z Y. Organization of feed production in England. Grassland and Turf, 1984(6): 8-12. |
| [10] |
Алешина И М, 陈樟勇. 英国饲料生产的组织. 草原与牧草, 1984(6): 8-12. |
| [11] |
Liu R Z. Wet storage of corn. Crop, 1992(2): 39-40. |
| [12] |
刘瑞征. 玉米湿储法. 作物杂志, 1992(2): 39-40. |
| [13] |
Xu L Z, Lv G Y, Han M T. Wet storage and feeding of grain corn. Heilongjiang Animal Science and Veterinary Medicine, 1982(4): 18-20. |
| [14] |
徐立志, 吕国英, 韩名堂. 籽粒玉米湿贮和饲喂. 黑龙江畜牧兽医, 1982(4): 18-20. |
| [15] |
Han M. Silage and high moisture cereal preservation methods. Feed China, 1988(4): 39-41. |
| [16] |
寒梅. 青贮饲料和含水量高的谷物保存法. 饲料广角, 1988(4): 39-41. |
| [17] |
Mombach R, Kennelly Y J, Kramer K G, et al. Effect of grain type and processing method on rumen fermentation and milk rumenic acid production. Animal, 2010, 4(8): 1425-1444. |
| [18] |
Kaufman T D. The effects of planting techniques on maize grain yield and silage production. Bloomington-Normal: Illinois State University, 2013. |
| [19] |
Junges D, Morais G, Spoto M H F, et al. Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. Journal of Dairy Science, 2017, 100(11): 9048-9051. |
| [20] |
Ferraretto L F, Taysom K, Taysom D M, et al. Relationships between dry matter content, ensiling, ammonia-nitrogen, and ruminal in vitro starch digestibility in high-moisture corn samples. Journal of Dairy Science, 2014, 97(5): 3221-3227. |
| [21] |
Paschoaloto J R, Guimaraes L A, Matos E M A, et al. Performance of Nellore bulls fed with rehydrated corn silage or rehydrated sorghum silage or sorghum grain in substitution of corn grain. Journal of Animal Science, 2020, 97(3): 419. |
| [22] |
Uegaki R, Kawano K, Ohsawa R, et al. Effect of different silage storing conditions on the oxygen concentration in the silo and fermentation quality of rice. Journal of Agricultural and Food Chemistry, 2017, 65(24): 4877-4882. |
| [23] |
Uegaki R, Kobayashi H, Inoue H, et al. Changes of fumonisin production in rice grain during ensiling. Animal Science Journal, 2013, 84(1): 48-53. |
| [24] |
Bachmann M, Wensch-Dorendorf M, Kuhnitzsch C, et al. Changes in composition and diversity of epiphytic microorganisms on field pea seeds, partial crop peas, and whole crop peas during maturation and ensiling with or without lactic acid bacteria inoculant. Microbiology Spectrum, 2022, 10(4): e0095322. |
| [25] |
Jobim C C, Junior M C, Junior V H, et al. Chemical composition and quality of conservation of corn (Zea mays L.) grain silages with differents levels of soy grains (Glycine max Merril). Semina-Ciencias Agrarias, 2010, 31(3): 773-782. |
| [26] |
Gefrom A, Ott E M, Hoedtke S, et al. Effect of ensiling moist field bean (Vicia faba), pea (Pisum sativum) and lupine (Lupinus spp.) grains on the contents of alkaloids, oligosaccharides and tannins. Journal of Animal Physiology and Animal Nutrition, 2013, 97(6): 1150-1160. |
| [27] |
Park J H, Cheong Y K, Kim K H, et al. Feed value and fermentation quality of wheat grain silage with respect to days after heading in Honam region of Korea. Journal of the Korean Society of Grassland and Forage Science, 2018, 38(2): 112-119. |
| [28] |
Park J H, Oh Y J, Cheong Y K, et al. Feed value and fermentation quality of covered barley grain silage with respect to days after heading in Honam region of Korea. Korean Journal of Crop Science, 2017, 62(1): 16-23. |
| [29] |
Wang X Y, Zhang S M, Guo Y Q, et al. Effects of harvest time on quality and mycotoxin of high-moisture corn kernel during wet storage. Shandong Agricultural Sciences, 2022, 54(4): 146-150. |
| [30] |
王兴亚, 张守梅, 郭玉秋, 收获期对高水分玉米籽粒湿贮品质及真菌毒素的影响. 山东农业科学, 2022, 54(4): 146-150. |
| [31] |
Maruyama S, Yokoyama I, Asai H, et al. Influence of ripening stages on the quality of whole crop silage and grain silage of fodder rice. Asian-Australasian Journal of Animal Sciences, 2005, 18(3): 340-344. |
| [32] |
Nakui T S, Masaki T, Aihara N, et al. The nutritive value of unhulled rice stored as high moisture grain feed. Tohoku Agricultural Research, 1986(39): 177-178. |
| [33] |
Song T H, Oh Y J, Kang H J, et al. Effect of feed value and fermentative quality according to harvesting time of barley and wheat grain silage. The Korean Society of Crop Science, 2015, 60(2): 174-179. |
| [34] |
Pereira D M, Santos E M, Oliveira J S, et al. Effect of cactus pear as a moistening additive in the production of rehydrated corn grain silage. The Journal of Agricultural Science, 2021, 159(9/10): 731-742. |
| [35] |
Wang Y, Wang C, Zhou W, et al. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of Moringa oleifera leaf silage. Frontiers in Microbiology, 2018, 9(1): 1817. |
| [36] |
Huck G L, Kreikemeier K K, Bolsen K K. Effect of reconstituting field-dried and early-harvested sorghum grain on the ensiling characteristics of the grain and on growth. Animal, 1999, 77(5): 1074-1081. |
| [37] |
Tamra T T, Bueno A V I, Jobim C C, et al. Effect of okara levels on corn grain silage. Revista Brasileira de Zootecnia, 2020, 49(1): e20190184. |
| [38] |
Santos M V F, Gómez C A G, Perea J M, et al. Factors affecting the nutritive value tropical forages silages. Arquivos de Zootecnia, 2010, 59(R): 24-43. |
| [39] |
Silva C M, Amaral P N C, Baggio R A, et al. Stability of high moisture corn silage and corn rehydrated. Revista Brasileira de Saude e Producao Animal, 2016, 17(3): 331-343. |
| [40] |
Horrocks R D, Vallentine J F. Harvested forages. California, USA: Academic Press, 1999: 325-337. |
| [41] |
Zhang N J, Liu J L, Lin B, et al. Research progress on composition characteristics of epiphytic microorganisms of green forage and their effects on silage quality. Chinese Journal of Animal Nutrition, 2023, 35(5): 2828-2835. |
| [42] |
张男吉, 刘江莉, 林波, 青绿饲料附生微生物组成特点及其对青贮品质影响的研究进展. 动物营养学报, 2023, 35(5): 2828-2835. |
| [43] |
Yan X, Wu Z Z, Zuo Y C, et al. Silage characteristics of different corn plant parts and strategies for improving their silage quality. Acta Agrestia Sinica, 2023, 31(8): 2275-2286. |
| [44] |
严旭, 吴子周, 左艳春, 玉米植株不同部位的青贮特征及其品质提升策略. 草地学报, 2023, 31(8): 2275-2286. |
| [45] |
Du M Y. Effects of different TMR diets on performance, gastrointestinal microbiome and metabolome of fattening lambs. Tai’an: Shandong Agricultural University, 2022. |
| [46] |
杜美妤. 不同TMR日粮对育肥羊生产性能、胃肠道微生物组及代谢组的影响研究. 泰安: 山东农业大学, 2022. |
| [47] |
Koenig K M, Beauchemin K A, Rode L M. Effect of grain processing and silage on microbial protein synthesis and nutrient digestibility in beef cattle fed barley-based diets. Journal of Animal Science, 2003, 81(4): 1057-1067. |
| [48] |
An J. Nutritional mechanism and prevention of rumen acidosis in ruminant. China Feed, 2007(2): 23-26. |
| [49] |
安娟. 反刍动物发生瘤胃酸中毒的营养机制及其防治. 中国饲料, 2007(2): 23-26. |
| [50] |
Inoue H, Tohno M, Kobayashi H, et al. Effects of moisture control, addition of glucose, inoculation of lactic acid bacteria and crushing process on the fermentation quality of rice grain silage. Grassland Science, 2013, 59(2): 63-72. |
| [51] |
Saylor B A, Casale F, Sultana H, et al. Effect of microbial inoculation and particle size on fermentation profile, aerobic stability, and ruminal in situ starch degradation of high-moisture corn ensiled for a short period. Journal of Dairy Science, 2020, 103(1): 379-395. |
| [52] |
Saylor B A, Diepersloot E C, Heinzen C, et al. Effect of kernel breakage on the fermentation profile, nitrogen fractions, and in vitro starch digestibility of whole-plant corn silage and ensiled corn grain. JDS Communications, 2021, 2(4): 191-195. |
| [53] |
Dai Z X, Li Z, Liao C X, et al. Analysis on key points of high moisture corn silage making. China Feed, 2022(17): 111-116. |
| [54] |
戴志翔, 李征, 廖晨星, 高湿玉米青贮制作关键点分析. 中国饲料, 2022(17): 111-116. |
| [55] |
Muck R E, Nadeau E M G, McAllister T A, et al. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000. |
| [56] |
Miyaji M, Inoue H, Kawaide T, et al. Effects of conservation method and crushing method of rice grain on rumen fermentation and nutrient digestibility in steers. Animal Feed Science and Technology, 2017, 227(1): 75-83. |
| [57] |
Silva N C D, Nascimento C F, Nascimento F A, et al. Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. Journal of Dairy Science, 2018, 101(5): 4158-4167. |
| [58] |
Taylor C C, Kung L. The effect of Lactobacillus buchneri 40788 on the fermentation and aerobic stability of high moisture corn in laboratory silos. Journal of Dairy Science, 2002, 85(6): 1526-1532. |
| [59] |
Chao S C, Young D G, Oberg C J. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. Journal of Essential Oil Research, 2000, 12(5): 639-649. |
| [60] |
Zhang F, Han S M, Li J C, et al. Effect of different additives on fermentation quality of maize seed. Journal of Grassland and Forage Science, 2018(A01): 14-15. |
| [61] |
张帆, 韩淑敏, 李井春, 不同添加剂对玉米籽实发酵品质的影响. 草学, 2018(A01): 14-15. |
| [62] |
Luo Y N, Luo Y, Bao J Z, et al. Effects of adding lactic acid bacteria and vanillin on silage quality of corn seed. Feed Industry, 2020, 41(19): 50-53. |
| [63] |
罗撄宁, 罗盈, 包锦泽, 添加乳酸菌和香草醛对甜玉米籽实青贮饲料品质的影响. 饲料工业, 2020, 41(19): 50-53. |
| [64] |
Liang D D, Xing F G, Wang Y, et al. Inhibitory of the growth of Aspergillus flavus and aflatoxin B1 in maize by plant extracts. Cereal & Feed Industry, 2015, 12(8): 51-56. |
| [65] |
梁丹丹, 邢福国, 王龑, 植物提取物抑制玉米中黄曲霉生长及产毒研究. 粮食与饲料工业, 2015,12(8): 51-56. |
| [66] |
Rezende A V, Rabelo C H S, Veiga R M, et al. Rehydration of corn grain with acid whey improves the silage quality. Animal Feed Science and Technology, 2014, 197(1): 213-221. |
| [67] |
Wallace R J, Chesson A. Biotechnology in animal feeds and animal feeding. Weinheim, Germany: VCH, 1995: 33-54. |
| [68] |
Schmidt R J, Hu W, Mills J A, et al. The development of lactic acid bacteria and Lactobacillus buchneri and their effects on the fermentation of alfalfa silage. Journal of Dairy Science, 2009, 92(10): 5005-5010. |
| [69] |
Carvalho P D A, Fernandes J, Silva É B, et al. Effects of hybrid, kernel maturity, and storage period on the bacterial community in high-moisture and rehydrated corn grain silages. Systematic and Applied Microbiology, 2020, 43(5): 126-131. |
| [70] |
Silva T, Smith M L, Barnard A M, et al. The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn. Journal of Dairy Science, 2015, 98(12): 8904-8912. |
| [71] |
Inoue H, Tohno M, Matsuo M, et al. Farm-scale method for producing high-quality rice grain silage. Grassland Science, 2013, 59(4): 226-229. |
| [72] |
Baron V S, Stevenson K R, Buchanan-Smith J G. Proteolysis and fermentation of corn-grain ensiled at several moisture levels and under several simulated storage methods. Canadian Journal of Animal Science, 1986, 66(2): 451-461. |
| [73] |
Hoffman P C, Esser N M, Shaver R D, et al. Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high moisture corn. Journal of Dairy Science, 2011, 94(5): 2465-2474. |
| [74] |
Diogenes L V, Edvan R L, Medeiros E D S, et al. Physicochemical composition and fatty acid profile of goat kids’ meat fed ground-corn-grain silage rehydrated with different additives. Animals, 2022, 13(1): 31. |
| [75] |
Oliveira K S, Salvati G S, Morais G, et al. Effect of length of storage and chemical additives on the nutritive value and starch degradability of reconstituted corn grain silage. Agronomy, 2023, 13(1): 209. |
| [76] |
Torres R N S, Ghedini C P, Coelho L M, et al. Meta-analysis of the effects of silage additives on high-moisture grain silage quality and performance of dairy cows. Livestock Science, 2021, 251(9): 104618. |
| [77] |
Neto A M S, Goulart L, Ribeiro A, et al. Propionic acid-based additive with surfactant action on the nutritive value of rehydrated corn grain silage for growing ewe lambs performance. Animal Feed Science and Technology, 2022, 294(12): 115515. |
| [78] |
Fu X G. Prevention and treatment of weaning stress syndrome in large-scale pig farm piglets. Livestock and Poultry Industry, 2020, 31(9): 87-89. |
| [79] |
伏秀阁. 规模化猪场仔猪断奶应激综合症的防治. 畜禽业, 2020, 31(9): 87-89. |
| [80] |
Liu Y, Qin X G. Application of chemical agents in the production of weaned piglets. Feed Research, 2005, 28(6): 32-34. |
| [81] |
刘勇, 秦绪光. 酸化剂在断奶仔猪生产中的应用. 饲料研究, 2005, 28(6): 32-34. |
| [82] |
Lan J W, Wang L, Zhao W J, et al. Research progress on application of acidifiers in pig production. Feed Research, 2023, 46(12): 159-162. |
| [83] |
兰静雯, 王磊, 赵文俊, 酸化剂在猪生产中的应用研究进展. 饲料研究, 2023, 46(12): 159-162. |
| [84] |
Huang X Q, Wang Z H. Effect of acidified maize on growth performance and gastrointestinal environment in weaned piglets. Chinese Journal of Animal Science, 2011, 47(17): 31-33. |
| [85] |
黄修奇, 王中华. 酸化玉米对断奶仔猪生长性能和胃肠道内环境的影响. 中国畜牧杂志, 2011, 47(17): 31-33. |
| [86] |
Wang Z H, Zhou D Z. Effects of maize seed silage on growth performance and immune function of weaning piglets. Cereal & Feed Industry, 2011, 12(10): 51-53. |
| [87] |
王中华, 周德忠. 青贮玉米籽实对断奶仔猪生长性能和免疫功能的影响. 粮食与饲料工业, 2011, 12(10): 51-53. |
| [88] |
Wang J Q, Yin F G, Zhu C, et al. Evaluation of probiotic bacteria for their effects on the growth performance and intestinal microbiota of newly-weaned pigs fed fermented high-moisture maize. Livestock Science, 2012, 145(1/2/3): 79-86. |
| [89] |
Niven S J, Zhu C, Columbus D, et al. Impact of controlled fermentation and steeping of high moisture corn on its nutritional value for pigs. Livestock Science, 2007, 109(1/2/3): 166-169. |
| [90] |
Wang Z H, Fang L H, Zhao X J, et al. Silage corn seeds affect performance, egg quality and intestinal environment in laying hens. Chinese Journal of Animal Nutrition, 2012, 24(8): 1571-1576. |
| [91] |
王中华, 方磊涵, 赵香菊, 青贮玉米籽实对蛋鸡生产性能、蛋品质和肠道内环境的影响. 动物营养学报, 2012, 24(8): 1571-1576. |
| [92] |
Fang L H, Yang J Y, Wang Z H. Effects of silage maize on production performance and non specific immunity of laying hens. Cereal & Feed Industry, 2012, 12(12): 54-56. |
| [93] |
方磊涵, 杨继远, 王中华. 青贮玉米籽实对蛋鸡生产性能和非特异性免疫的影响. 粮食与饲料工业, 2012, 12(12): 54-56. |
| [94] |
Kunishige K, Koda Y, Hara S. Effect of high moisture ear corn and high moisture shelled corn feeds on laying hen performance. The Journal of Poultry Science, 2016, 53(4): 284-290. |
| [95] |
Barcellos L C G, Furlan A C, Murakami A E, et al. Nutritional evaluation of high moisture sorghum silage grain with high or low tannin content for broilers. Revista Brasileira de Zootecnia, 2006, 35(1): 104-112. |
| [96] |
Konieczka P, Mikulski D, Ognik K, et al. Chemically preserved high-moisture corn in the turkey diet does not compromise performance and maintains the functional status of the gut. Animal Feed Science and Technology, 2020, 263: 114483. |
| [97] |
Cruz-Polycarpo V C, Sartori J R, Gonçalves J C, et al. Feeding high-moisture corn grain silage to broilers fed alternative diets and maintained at different environmental temperatures. Brazilian Journal of Poultry Science, 2014, 16(4): 449-457. |
| [98] |
Li Y P. Effect of wet storage of grain corn on dairy cows. Modern Animal Husbandry Science & Technology, 2000(2): 9-10. |
| [99] |
李玉萍. 籽粒玉米湿贮饲喂奶牛的效果观察. 现代畜牧科技, 2000(2): 9-10. |
| [100] |
Stock R A, Sindt M H, Cleale R M, et al. High-moisture corn utilization in finishing cattle. Journal of Animal Science, 1991, 69(4): 1645-1656. |
| [101] |
San Emeterio F, Reis R B, Campos W E, et al. Effect of coarse or fine grinding on utilization of dry or ensiled corn by lactating dairy cows. Journal of Dairy Science, 2000, 83(12): 2839-2848. |
| [102] |
He L W, Wu H, Wang G G, et al. The effects of including corn silage, corn stalk silage, and corn grain in finishing ration of beef steers on meat quality and oxidative stability. Meat Science, 2018, 139(5): 142-148. |
| [103] |
Arcari M A, Martins C M M R, Tomazi T, et al. Effect of substituting dry corn with rehydrated ensiled corn on dairy cow milk yield and nutrient digestibility. Animal Feed Science and Technology, 2016, 221(11): 167-173. |
| [104] |
Clark J H, Croom W J, Harshbarger K E. Feeding value of dry, ensiled, and acid treated high moisture corn fed whole or rolled to lactating cows. Journal of Dairy Science, 1975, 58(6): 907-916. |
| [105] |
Oba M, Allen M S. Effects of corn grain conservation method on feeding behavior and productivity of lactating dairy cows at two dietary starch concentrations. Journal of Dairy Science, 2003, 86(1): 174-183. |
| [106] |
Gómez-Vázquez A, Pinos-Rodríguez J M, García-López J C, et al. Nutritional value of sugarcane silage enriched with corn grain, urea, and minerals as feed supplement on growth performance of beef steers grazing stargrass. Tropical Animal Health and Production, 2011, 43(1): 215-220. |
| [107] |
Podversich F, Roskopf S, Abdelhadi L. Effects of sorghum silage kernel processing on intake and apparent total tract digestibility of beef heifers. Journal of Animal Science, 2020, 98(4): 153-154. |
| [108] |
Forsyth J G, Mowat D N, Stone J B. Feeding value for beef and dairy cattle of high moisture corn preserved with propionic acid. Journal of Animal Science, 1972, 52(1): 73-79. |
| [109] |
Peng S Y. Effects of feeding different levels of high-moisture corn on rumen fermentation, production performance and rumen microbial diversity in dairy. Daqing: Heilongjiang Bayi Agricultural University, 2023. |
| [110] |
彭述宇. 饲喂不同水平湿贮玉米对奶牛瘤胃发酵、生产性能及瘤胃菌群多样性的影响. 大庆: 黑龙江八一农垦大学, 2023. |
| [111] |
Cardoso-Gutiérrez E, Narváez-López A C, Robles-Jiménez L E, et al. Production performance, nutrient digestibility, and milk composition of dairy ewes supplemented with crushed sunflower seeds and sunflower seed silage in corn silage-based diets. Animals, 2020, 10(12): 2354. |
| [112] |
Ítavo C C, Morais M G, Ítavo L, et al. Intake and digestibility of nutrients in sheep diets based on corn and sorghum grain high moisture silages. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2009, 61(2): 452-459. |
| [113] |
Hara S. Effect of grinding, sodium hydroxide and anhydrous ammonia treatments on digestibility of soft rice grain silage in cow. Nihon Chikusan Gakkaiho, 2010, 81(2): 153-159. |
国家自然科学基金项目(31971764)
/
| 〈 |
|
〉 |