“凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究
李文秀 , 姚拓 , 李昌宁 , 贾倩民 , 何傲蕾 , 周杨
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 88 -98.
“凹凸棒-有机基质”菌肥载体最佳配比的筛选及对紫花苜蓿的促生效果研究
Screening of the best ratio of ‘attapulgite-organic matrix’ bacterial fertilizer carrier and its growth-promotion effect on alfalfa
为了探究凹凸棒加有机基质作为菌肥载体的可行性以及制作菌肥时菌液的最佳添加量。本试验通过向有机基质中添加不同梯度凹凸棒(分别为5%、7.5%、10%)作为菌肥载体,然后向其中添加不同梯度菌液(分别为25%、27.5%、30%)制作成固体菌肥;通过测定菌肥货架期及紫花苜蓿盆栽试验验证菌肥促生效果,确定凹凸棒添加量以及菌液添加量。结果显示:菌肥保存180 d后,不同载体菌肥有效活菌数均大于2×108 cfu·g-1,杂菌数均小于3×106 cfu·g-1,其中5%凹凸棒加25%的菌液(F2+25%菌液)处理效果最好;7.5%凹凸棒加30%菌液(F3+30%菌液)处理下,紫花苜蓿结瘤数最多,为62.7个·盆-1,较对照提高了317.8%。5%凹凸棒加25%的菌液(F2+25%菌液)处理下,紫花苜蓿地上、地下生物量、叶绿素含量较对照分别提高了46.5%、86.2%和54.9%;总根长、总根表面积、根尖数和根分叉数较对照提高了87.7%、108.4%、96.2%和252.0%;通过隶属函数分析得出,5%凹凸棒加25%的菌液(F2+25%菌液)处理对紫花苜蓿促生效果最好。
This experiment explored the feasibility of attapulgite plus an organic matrix as a carrier of bacterial fertilizer and the optimal amount of bacterial liquid to be added when making bacterial fertilizer. Different amounts of attapulgite (5%, 7.5%, 10%; F1, F2 and F3, respectively) were added to an organic matrix as the carrier for bacterial fertilizer, and then different quantities of bacterial liquid (25%, 27.5%, 30%) were added to make solid bacterial fertilizer. The shelf life of bacterial fertilizer was evaluated and the growth-promotion effect of the bacterial fertilizer was verified by measuring plant traits of alfalfa(Medicago sativa) in a pot experiment, for the various attapulgite and bacterial liquid addition treatments. It was found that 180 days after preparation, the effective viable count of all the different bacterial fertilizer carrier formulations was more than 2×108 cfu·g-1, and the number of miscellaneous bacteria was less than 3×106 cfu·g-1. The number of alfalfa nodules was the highest (62.7 per pot; 317.8% higher than control plants with no bacterial fertilizer added) under the treatment combination F3+30% bacterial liquid. The above-ground and below-ground biomass and chlorophyll content of alfalfa under the treatment comprising F2+25% bacterial liquid were increased by 46.5%, 86.2% and 54.9%, respectively, while the total root length, total root surface area, root tip number and root bifurcation number were increased by 87.7%, 108.4%, 96.2% and 252.0%, respectively, compared with the control plants. However, when data were analyzed by multivariate membership function, the treatment comprising F2+25% bacterial liquid was found to have the best effect on the growth of alfalfa.
attapulgite / bacterial fertilizer carrier / alfalfa / plant growth-promoting characteristics
| [1] |
Liu F, Jing S X, Hu J, et al. Effects of cadmium and arbuscular mycorrhizal fungi inoculation on the growth and nitrogen uptake of alfalfa (Medicago sativa). Acta Prataculturae Sinica, 2017, 26(2): 69-77. |
| [2] |
刘芳, 景戍旋, 胡健, 镉污染和接种丛枝菌根真菌对紫花苜蓿生长和氮吸收的影响. 草业学报, 2017, 26(2): 69-77. |
| [3] |
Ge X L, Yang H S, Liu J, et al. Effects of phosphorus level on growth and hay yield of alfalfa. Journal of Inner Mongolia Minzu University (Natural Sciences), 2009, 24(5): 509-513. |
| [4] |
葛选良, 杨恒山, 刘晶, 施磷水平对紫花苜蓿生长及草产量的影响. 内蒙古民族大学学报(自然科学版), 2009, 24(5): 509-513. |
| [5] |
Li Y B, Li Y L, Guan G H, et al. Screening, identification of plant growth promoting rhizobacteria and its effect on reducing fertilization while increasing efficiency in wheat (Triticum aestivum). Journal of Agricultural Biotechnology, 2020, 28(8): 1471-1476. |
| [6] |
李永斌, 李云龙, 关国华, 植物根际促生菌的筛选、鉴定及其对小麦的减肥增产效果. 农业生物技术学报, 2020, 28(8): 1471-1476. |
| [7] |
Duan Q B, Yao T, Han H W, et al. Formulation of biofertilizer carrier using solid agricultural residues. Journal of Arid Land Resources and Environment, 2016, 30(1): 147-151. |
| [8] |
段淇斌, 姚拓, 韩华雯, 利用几种固体农业废弃物配制生物肥料载体的研究. 干旱区资源与环境, 2016, 30(1): 147-151. |
| [9] |
Zhang S Y. Application of fly ash in absorbing silicate bacteria. Journal of the Hebei Academy of Sciences, 2006, 23(3): 30-33. |
| [10] |
章淑艳. 粉煤灰在硅酸盐菌剂中的应用. 河北省科学院学报, 2006, 23(3): 30-33. |
| [11] |
Stephens J H G, Rask H M. Inoculant production and formulation. Field Crops Research, 2000, 65(2/3): 249-258. |
| [12] |
Wei Y F, Wang J T, Li W H, et al. Effects of attapulgite-biochar composites on nutrient slow-release in pakchoi field and the growth of pakchoi. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(22): 121-132. |
| [13] |
魏彦凤, 王继涛, 李文慧, 凹凸棒土-生物炭缓释材料对养分缓释及小白菜生长的影响. 农业工程学报, 2023, 39(22): 121-132. |
| [14] |
Sainao W Q, Zhang M D, Ma X J, et al. Physiological effects of cadmium stress on Astragalus membranaceus seedlings and alleviative effects of attapulgite clay on cadmium stress. China Journal of Chinese Materia Medica, 2018, 43(15): 3115-3126. |
| [15] |
赛闹汪青, 张牡丹, 马小俊, 镉胁迫对黄芪幼苗的生理学影响及凹凸棒粘土对镉胁迫缓解作用的研究. 中国中药杂志, 2018, 43(15): 3115-3126. |
| [16] |
Tian Z H, Xue S P. Attapulgite modification and its research of repairing the soil of heavy metal contaminated. Applied Chemical Industry, 2019, 48(4): 883-887. |
| [17] |
田振华, 薛胜平. 凹凸棒石改性及其修复重金属污染土壤的研究. 应用化工, 2019, 48(4): 883-887. |
| [18] |
Wang A Q, Lu Y S, Kang Y R, et al. Research progress on the applications of attapulgite in animal healthy breeding. Feed Industry, 2024, 45(10): 1-9. |
| [19] |
王爱勤, 卢予沈, 康玉茹, 凹凸棒石在动物健康养殖中应用研究进展. 饲料工业, 2024, 45(10): 1-9. |
| [20] |
Bao S D. Agrochemical analysis of soil. Beijing: China Agriculture Press, 2006: 39-114. |
| [21] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2006: 39-114. |
| [22] |
Hu Z Q, Wang K H, Li C, et al. Cluster analysis of bacteriostatic effects of 50 heat-clearing Chinese medicine against Staphylococcus aureus. Chinese Journal of Medical Guide, 2023, 25(11): 1161-1166. |
| [23] |
胡子卿, 王珂慧, 李驰, 50种清热类中药对金黄色葡萄球菌抑菌作用的聚类分析. 中国医药导刊, 2023, 25(11): 1161-1166. |
| [24] |
Li Q, Yao T, Yang X M, et al. Effects of different dosages of microbial fertilizers on growth and quality of oat in semi-arid area. Journal of Arid Land Resources and Environment, 2020, 34(3): 159-165. |
| [25] |
李琦, 姚拓, 杨晓玫, 半干旱地区不同剂型微生物菌肥替代部分化肥对燕麦生长和品质的影响. 干旱区资源与环境, 2020, 34(3): 159-165. |
| [26] |
Jin Y L, Yao T, Lan X J, et al. Inhibition characteristics of four strains of biocontrol bacteria against root rot pathogens of oats. Grassland and Turf, 2023, 43(6): 9-16. |
| [27] |
金艳丽, 姚拓, 兰晓君, 4株生防细菌对燕麦根腐病原菌抑菌特性研究. 草原与草坪, 2023, 43(6): 9-16. |
| [28] |
Xie X, Yang J L, Liu X Y. Optimizing the determination conditions of total bacterial colonies in soil. Chinese Agricultural Science Bulletin, 2020, 36(11): 92-95. |
| [29] |
谢夏, 杨建兰, 刘新育. 土壤中细菌菌落总数的测定条件优化. 中国农学通报, 2020, 36(11): 92-95. |
| [30] |
Lou X D, Zhang G L, Ye B C. Screening of high selenium-enriched yeast and enhancement of its selenium-enriched capacity. Biotechnology Bulletin, 2017, 33(12): 132-137. |
| [31] |
娄兴丹, 张根林, 叶邦策. 高富硒酵母的筛选及富硒强化研究. 生物技术通报, 2017, 33(12): 132-137. |
| [32] |
Wang L R, Wang W, Pu X J, et al. Comparison of feeding quality and production performance of different alfalfa (Medicago sativa L) varieties in the arid zone of eastern Qinghai Province. Acta Agrestia Sinica, 2024, 32(6): 1936-1943. |
| [33] |
王龙然, 王伟, 蒲小剑, 青海东部干旱区不同紫花苜蓿品种饲用品质和生产性能比较. 草地学报, 2024, 32(6): 1936-1943. |
| [34] |
Han D R, Yao T, Li H Y, et al. Effect of reducing chemical fertilizer and substitution with microbial fertilizer on the growth of Elymus nutans. Acta Prataculturae Sinica, 2022, 31(4): 53-61. |
| [35] |
撖冬荣, 姚拓, 李海云, 化肥减量配施微生物肥料对垂穗披碱草生长的影响. 草业学报, 2022, 31(4): 53-61. |
| [36] |
Li X M, Yao T, Li C N, et al. Screening and identification of symbiotically efficient and stress-resistant rhizobia of wild Medicago lupulina in Gannan. Acta Prataculturae Sinica, 2025, 34(3): 134-143. |
| [37] |
李雪梅, 姚拓, 李昌宁, 甘南野生天蓝苜蓿高效共生、抗逆根瘤菌筛选鉴定. 草业学报, 2025, 34(3): 134-143. |
| [38] |
Li H S. Plant physiology biochemistry experiment principle and technology. Beijing: Higher Education Press, 2000: 186-187. |
| [39] |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 186-187. |
| [40] |
Dong W K, Ma X, Zhou X W, et al. Effects of exogenous glycine betaine on the physiological characteristics in Medicago sativa seedlings under low-temperature stress. Acta Agrestia Sinica, 2019, 27(1): 130-140. |
| [41] |
董文科, 马祥, 周学文, 外源甜菜碱对低温胁迫下紫花苜蓿幼苗生理特性的影响. 草地学报, 2019, 27(1): 130-140. |
| [42] |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Microbial inoculants in agriculture,GB20287-2006. Beijing: China Standard Press, 2006. |
| [43] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 农用微生物菌剂, GB20287-2006. 北京: 中国标准出版社, 2006. |
| [44] |
Andreeva O A, Kozhevin P A. Optimization of natural communities of soil microorganisms as a way to create microbial fertilizers. Moscow University Soil Science Bulletin, 2014, 69(4): 184-187. |
| [45] |
Liu J J. Effects of microbial fertilizer on maize seedling and growth in black soil. Changchun: Jilin Agricultural University, 2023. |
| [46] |
刘京京. 微生物肥料对黑土农田玉米苗情及生长发育的影响研究. 长春: 吉林农业大学, 2023. |
| [47] |
Wang Y X, E S Z, Yuan J H, et al. Effects of attapulgite addition on fermentation temperature and nutrient content of organic fertilizer. Journal of Agro-Environment Science, 2021, 40(12): 2779-2787. |
| [48] |
王钰轩, 俄胜哲, 袁金华, 凹凸棒添加对有机肥发酵温度及养分的影响. 农业环境科学学报, 2021, 40(12): 2779-2787. |
| [49] |
Lynch J P, Brown K M. New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society of London, 2012, 367(1595): 1598-1604. |
| [50] |
Niu X L, Nan Z B. Review of minirhizotron applications for study of fine roots in grassland. Acta Prataculturae Sinica, 2017, 26(11): 205-215. |
| [51] |
牛学礼, 南志标. 运用微根管技术研究草地植物细根的进展. 草业学报, 2017, 26(11): 205-215. |
| [52] |
Li Z Y, Zhang R, Zhang J, et al. Effect of compound microbial fertilizer on the root growth of Trifolium pratense L.cv. Minshan by partly replacing chemical fertilizer. China Herbivore Science, 2018, 38(1): 38-42. |
| [53] |
李智燕, 张榕, 张洁, 微生物专用菌肥与化肥配施对红三叶根系生长的影响. 中国草食动物科学, 2018, 38(1): 38-42. |
| [54] |
Yang J J, Cheng W D, Lin H M, et al. Effect of palygorskite adding NPK fertilizer on plant dry matter accumulation and polysaccharide content of Radix hedysari. Journal of Anhui Agricultural Sciences, 2010, 38(9): 4536-4538, 4541. |
| [55] |
杨建军, 程卫东, 蔺海明, 坡缕石与氮磷钾配施对红芪干物质积累及多糖含量的影响. 安徽农业科学, 2010, 38(9): 4536-4538, 4541. |
| [56] |
Kusi N Y O. Growth response of alfalfa to Azomite composite micronutrient fertilizer on four lime-amended Virginia soils. Grassland Science, 2021, 67(3): 225-233. |
| [57] |
He S B, Yu C F, Pei H D, et al. Application effect of Xinqing attapulgite compound microbial fertilizer on red Earth grape. Agricultural Technology and Information, 2023(10): 132-136. |
| [58] |
贺生兵, 余彩芬, 裴海东, 欣庆凹凸棒复合微生物肥料在红地球葡萄上的应用效果. 农业科技与信息, 2023(10): 132-136. |
| [59] |
Guan Y, Song C, Gan Y, et al. Increased maize yield using slow-release attapulgite-coated fertilizers. Agronomy for Sustainable Development, 2014, 34(3): 657-665. |
| [60] |
Li C N, Li Z X, Cao Q X, et al. Effects of 5 plant growth-promoting rhizobacteria on the growth and quality of Medicago sativa. Grassland and Turf, 2018, 38(3): 29-34. |
| [61] |
李昌宁, 李政璇, 曹全熙, 5株植物根际促生菌对紫花苜蓿生长和品质的影响. 草原与草坪, 2018, 38(3): 29-34. |
| [62] |
Cheng Q D. Research on the effects of microbial fertilizer on growth and development of Lycium barba L. Lanzhou: Gansu Agricultural University, 2014. |
| [63] |
程乾斗. 微生物肥料对枸杞生长发育影响的研究. 兰州: 甘肃农业大学, 2014. |
| [64] |
Zhu D. Study on growth promoting effect of compound microbial fertilizer on oat growth. Harbin: Harbin Normal University, 2022. |
| [65] |
祝丹. 复合微生物肥料对燕麦的促生效果研究. 哈尔滨: 哈尔滨师范大学, 2022. |
甘肃农业大学科研启动经费(GAU-KYQD-2022-01)
“有机肥-土壤-牧草”中的传播机制研究(GAU-KYQD-2022-01)
基于科技小院的农业人才培养及草畜肥循环技术集成与示范资助
/
| 〈 |
|
〉 |