青藏高原剥离草甸不同堆存方式对根系活性的影响
耿玉刚 , 杨红梅 , 王文武 , 罗睿杰 , 赵保国 , 陈江红 , 秦昌盛 , 陈锐银
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 79 -87.
青藏高原剥离草甸不同堆存方式对根系活性的影响
Effects of stockpiling methods on root activity in stripped alpine meadows of the Qinghai-Tibet Plateau
随着青藏高原地区资源开发的加速,特别是光伏电站建设的推进,草甸的保护面临严峻挑战。本研究旨在系统评估不同堆存方式对青藏高原地区剥离草甸根系活性的影响,探索最佳的草甸根系保护措施。本研究选取了平铺法、镂空法、支架法、三层重叠法、五层重叠法和水土保持方案支架法(以下简称“水保支架法”),通过综合分析这6种方式下土壤的理化性质和草甸根系活性,评估其对剥离草甸保护的效果。测定了不同堆存方式下的土壤pH值、有机碳、全氮、全钾、全磷、有效磷、速效钾、碱解氮含量等理化指标,以及表征草甸根系活性的氯化三苯基四氮唑(TTC,mg·kg-1·h-1)还原强度,并探讨了这些指标与根系活性之间的关系。结果表明:不同堆存方式对于土壤理化性质的影响有限。水保支架法在维持草甸根系活性方面具有显著优势。根系TTC还原强度依次为:水保支架法(5.52 mg·kg-1·h-1)>支架法(4.52 mg·kg-1·h-1)>镂空法(4.02 mg·kg-1·h-1)>平铺法(3.74 mg·kg-1·h-1)>五层重叠法(3.71 mg·kg-1·h-1)>三层重叠法(3.54 mg·kg-1·h-1)。钾元素(全钾和速效钾)在促进根系生长、提高呼吸速率和增强抗逆性方面发挥重要作用,而土壤pH值、有机碳含量和磷元素对根系活性的影响较小。总的来说,本研究揭示了不同堆存方式对剥离草甸根系活性的影响,为草甸生态修复及可持续发展提供了科学依据。
With the increasing rate of economic development in the Qinghai-Tibet Plateau, particularly the construction of photovoltaic power stations, meadow conservation faces significant challenges. This study systematically evaluated the impact of different stockpiling methods on the root activity of stripped alpine meadows on the Qinghai-Tibet Plateau, aiming to identify the pattern that most effectively preserved root activity. Six stockpiling methods were tested: flat-laying, hollow, scaffold, three-layer overlapping, five-layer overlapping, and a soil and water conservation scaffold (hereafter referred to as a “conservation scaffold”). Soil physicochemical properties and meadow root activity under the six stockpiling methods were comprehensively analyzed to assess their effectiveness in protecting stripped meadows. Key soil properties, including pH, organic carbon content, total nitrogen content, total potassium content, total phosphorus content, available phosphorus content, available potassium content, and alkaline hydrolyzable nitrogen content, were measured, along with triphenyltetrazolium chloride (TTC, mg·kg⁻¹·h⁻¹) reduction intensity as an indicator of root activity. The relationships between these indicators and root activity were also examined. The results show that the different stockpiling methods had limited influence on soil physicochemical properties. However, the conservation scaffold showed a significant advantage in maintaining meadow root activity, with root TTC reduction intensity as follows: Conservation scaffold (5.52 mg·kg⁻¹·h⁻¹)>scaffold (4.52 mg·kg⁻¹·h⁻¹)>hollow (4.02 mg·kg⁻¹·h⁻¹)>flat-laying (3.74 mg·kg⁻¹·h⁻¹)>five-layer overlapping (3.71 mg·kg⁻¹·h⁻¹)>three-layer overlapping (3.54 mg·kg⁻¹·h⁻¹). Soil potassium level (total potassium and available potassium) was strongly associated with promotion of root growth, increased soil respiration rate, and enhanced stress resistance, while soil pH, organic carbon content, and phosphorus had weaker associations with root activity. Overall, this study reveals the effects of different photovoltaic panel installation patterns on the root activity of stripped meadows, providing scientific data to support meadow ecological restoration and sustainable development planning.
草甸生态系统 / 堆存方式 / 根系活性 / 影响因子 / 生态修复
meadow ecosystem / stockpiling methods / root activity / influencing factors / ecological restoration
| [1] |
Yang X Y, Xia T Y, Wu T. Potassium nutrient stress in plants: A review. Chinese Agricultural Science Bulletin, 2023, 39(18): 101-106. |
| [2] |
杨晓燕, 夏体渊, 吴甜. 植物钾营养胁迫研究进展. 中国农学通报, 2023, 39(18): 101-106. |
| [3] |
Du Q, Zhao X H, Jiang C J, et al. Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agricultural Sciences, 2017, 8(11): 1263-1277. |
| [4] |
Liu C E, Yang Y X, Yang Y. Distribution, accumulation and dynamics of kalium of wetland plants in upper shoal of the Jiuduansha, Shanghai. Wetland Science, 2008, 6(2): 185-191. |
| [5] |
刘长娥, 杨永兴, 杨杨. 九段沙上沙湿地植物钾元素的分布、积累与动态. 湿地科学, 2008, 6(2): 185-191. |
| [6] |
Luo T, Yin X D, Qu S M, et al. Effects of photovoltaic panels on quantitative characteristics of plant functional groups in meadow steppe. Grassland and Turf, 2023, 43(6): 32-37. |
| [7] |
罗厅, 尹晓冬, 曲善民, 光伏电板对草甸草原植物功能群数量特征的影响. 草原与草坪, 2023, 43(6): 32-37. |
| [8] |
Tian Z Q, Zhang Y, Liu X, et al. Effects of photovoltaic power station construction on terrestrial environment: Retrospect and prospect. Environmental Science, 2024, 45(1): 239-247. |
| [9] |
田政卿, 张勇, 刘向, 光伏电站建设对陆地生态环境的影响: 研究进展与展望. 环境科学, 2024, 45(1): 239-247. |
| [10] |
Liu L J. Study on spatial heterogeneity of soil water and soil total carbon of alpine area in eastern Qinghai-Tibetan Plateau. Chengdu: Sichuan Normal University, 2008. |
| [11] |
柳领君. 青藏高原东缘高寒地区土壤水分与土壤全碳空间异质性研究. 成都: 四川师范大学, 2008. |
| [12] |
Zhou Z Y, Cui B L, Chen K L, et al. Effects of simulated changes in precipitation on soil respiration in alpine lakeshore wetlands. Research of Soil and Water Conservation, 2023, 30(5): 130-137. |
| [13] |
周祉蕴, 崔博亮, 陈克龙, 模拟降雨量变化对高寒湖滨湿地土壤呼吸的影响. 水土保持研究, 2023, 30(5): 130-137. |
| [14] |
Bao S D. Soil agricultural and chemical analysis (3rd edition). Beijing: China Agricultural Press, 1999. |
| [15] |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社,1999. |
| [16] |
Ye B X, Mao D C, Liu X C. Study on the correlation of root activity and photosynthetic rate in the later growth duration of super-wheat. Shandong Agricultural Sciences, 2005(4): 4-16. |
| [17] |
叶宝兴, 毛达超, 刘学春. 超级小麦生育后期根系活力与净光合速率相关性的研究. 山东农业科学, 2005(4): 4-16. |
| [18] |
Mareri L, Parrotta L, Cai G. Environmental stress and plants. International Journal of Molecular Sciences, 2022, 23(10): 16-29. |
| [19] |
Caboň M, Galvánek D, Etheredge A P, et al. Mulching has negative impact on fungal and plant diversity in Slovak oligotrophic grasslands. Basic and Applied Ecology, 2021, 52(2): 24-37. |
| [20] |
Han X, Li Y H, Du X F, et al. Effect of grassland degradation on soil quality and soil biotic community in a semi-arid temperate steppe. Ecological Processes, 2020, 63(9): 1-11. |
| [21] |
Li C X, Wu X B, Jin Y Z. Advances on plant-microbe interaction mediated by root metabolites. Acta Microbiologica Sinica, 2022, 62(9): 3318-3328. |
| [22] |
李春霞, 吴兴彪, 靳亚忠. 根系代谢物介导的植物-微生物互作的研究进展. 微生物学报, 2022, 62(9): 3318-3328. |
| [23] |
Wu J Q, Ma W W, Li G, et al. Effects of four vegetation types on soil physical characteristics and permeability in Loess Plateau. Journal of Soil and Water Conservation, 2018, 32(4): 133-138. |
| [24] |
吴江琪, 马维伟, 李广, 黄土高原4种植被类型对土壤物理特征及渗透性的影响. 水土保持学报, 2018, 32(4): 133-138. |
| [25] |
You Y, Jiang W, Yi L, et al. Seeding alpine grasses in low altitude region increases global warming potential during early seedling growth. Journal of Environmental Management, 2024, 356(4): 120-138. |
| [26] |
Jiang X Y, Yang S Q, Feng F, et al. Experimental study on the influence of vegetation roots on soil permeability. Journal of Hefei University of Technology (Natural Science), 2022, 45(3): 370-375. |
| [27] |
蒋希雁, 杨尚青, 冯峰, 植被根系对土体渗透特性影响的试验研究.合肥工业大学学报(自然科学版), 2022, 45(3): 370-375. |
| [28] |
Papdi E, Veres A, Kovács F, et al. How different mulch materials regulate soil moisture and microbiological activity? Journal of Central European Green Innovation, 2022, 10(9): 26-38. |
| [29] |
Wang T. The impact of photovoltaic power construction on soil and vegetation in Jingbian County. Yangling: Northwest A&F University, 2015. |
| [30] |
王涛. 光伏电站建设对靖边县土壤、植被的影响研究. 杨凌: 西北农林科技大学, 2015. |
| [31] |
Li L Z, Liu H, Shi X F, et al. A brief analysis of the impact of photovoltaic power stations on the environment. Science & Technology Information, 2012, 41(12): 91. |
| [32] |
李丽珍, 刘辉, 史学峰, 浅析光伏电站对环境的影响. 科技信息, 2012, 41(12): 91. |
| [33] |
Geng X D, Xu R, Liu Y W. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China.Chinese Journal of Plant Ecology, 2018, 42(3): 397-405. |
| [34] |
耿晓东, 旭日, 刘永稳. 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应. 植物生态学报, 2018, 42(3): 397-405. |
| [35] |
Zhang J, Yuan M S, Zhang J, et al. Responses of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years. Acta Ecologica Sinica, 2020, 40(18): 6269-6281. |
| [36] |
张江, 袁旻舒, 张婧, 近30年来青藏高原高寒草地NDVI动态变化对自然及人为因子的响应. 生态学报, 2020, 40(18): 6269-6281. |
| [37] |
Rondina A B L, Tonon B C, Lescano L E A M, et al. Plants of distinct successional stages have different strategies for nutrient acquisition in an Atlantic rain forest ecosystem. International Journal of Plant Sciences, 2019, 180(3): 186-199. |
| [38] |
Zheng Z, Wu X, Gong L, et al. Studies on the correlation between δ13C and nutrient elements in two desert plants. Forests, 2023, 14(12): 23-38. |
| [39] |
Tang K, Zhu W W, Zhou W X, et al. Research progress on effects of soil pH on plant growth and development. Crop Research, 2013, 27(2): 207-212. |
| [40] |
唐琨, 朱伟文, 周文新, 土壤pH对植物生长发育影响的研究进展. 作物研究, 2013, 27(2): 207-212. |
| [41] |
Lian M H, Sun L N, Hu X M, et al. Effect of pH on cadmium speciation in rhizosphere soil solutions of different cadmium accumulating plants. Chinese Journal of Ecology, 2015, 34(1): 130-137. |
| [42] |
廉梅花, 孙丽娜, 胡筱敏, pH 对不同富集能力植物根际土壤溶液中镉形态的影响. 生态学杂志, 2015, 34(1): 130-137. |
| [43] |
Ni H J, Su W H, Fan S H, et al. Responses of forest soil nutrient cycling to nutrient input modes: A review. Chinese Journal of Ecology, 2019, 38(3): 863-872. |
| [44] |
倪惠菁, 苏文会, 范少辉, 养分输入方式对森林生态系统土壤养分循环的影响研究进展. 生态学杂志, 2019, 38(3): 863-872. |
| [45] |
Centenaro G, Hudek C, Zanella A, et al. Root-soil physical and biotic interactions with a focus on tree root systems: A review. Applied Soil Ecology, 2018, 123(2): 318-327. |
| [46] |
Yang J X, Yin W J, Yang X R. Application of turf stripping and re-laying technology in the Sichuan-Tibet power grid interconnection project. Technology Innovation and Appllication, 2014(19): 24-25. |
| [47] |
杨建霞, 尹武君, 杨晓瑞. 草皮剥离回铺技术在川藏联网工程中的应用. 科技创新与应用, 2014(19): 24-25. |
| [48] |
Kong Y Y, Luo Q Y, Chen Z. Study on the characteristics of vegetation composition and community succession of alpine meadow under three management modes. Journal of Yunnan Agricultural University (Natural Sciences), 2020, 35(6): 1046-1053. |
| [49] |
孔杨云, 罗巧玉, 陈志. 3种管理模式下高寒草甸植物群落构成及稳定性研究. 云南农业大学学报(自然科学), 2020, 35(6): 1046-1053. |
| [50] |
Xian G. Huadian Changdu New Energy Company: Top-level design draws a green blueprint, harmonious coexistence guards the third pole. (2024-06-06)[2025-01-03]. https://k.sina.com.cn/article_7517400647_1c0126e4705905939s.html. |
| [51] |
鲜敢. 华电昌都新能源公司: 顶层设计绘就绿蓝图, 和谐共生守护第三极. (2024-06-06)[2025-01-03]. https://k.sina.com.cn/article_7517400647_1c0126e4705905939s.html. |
成都院项目(NZK22272)
成都院博后课题(P60224)
华电集团科技项目(CHDKJ23-02-01-82)
华电集团科技项目(CHDKJ23-02-02-75)
华电集团科技项目(CHDKJ23-02-02-76)
昌都新能源项目(CDXNY23-07-07-02)
/
| 〈 |
|
〉 |