禾本科植物根际土壤酶活性和细菌群落结构差异

汤珊珊 ,  胡敏

草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 99 -108.

PDF (1171KB)
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 99 -108. DOI: 10.11686/cyxb2024358
研究论文

禾本科植物根际土壤酶活性和细菌群落结构差异

作者信息 +

Differences in enzyme activity and bacterial community structure in rhizosphere soil of four grass species

Author information +
文章历史 +
PDF (1198K)

摘要

本研究旨在探讨不同禾草对土壤微生态环境的影响。选择百喜草、黑麦草、高羊茅和苏丹草4种禾草,通过盆栽种植试验,结合化学分析和高通量测序技术,研究禾草根际土壤酶活性、细菌群落组成及多样性,并分析其与土壤理化性质的相关性。结果表明:土壤可溶性有机碳(DOC)、铵态氮(NH4+-N)、硝态氮(NO3--N)和速效磷(AP)含量在不同禾草根际土中存在显著差异。与CK处理比,4种禾草处理均提高了根际土壤β-1,4-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、β-1,4-木糖苷酶(βX)、β-1,4-N-乙酰葡糖氨糖苷酶(NAG)和碱性磷酸酶(ALP)活性。苏丹草处理中βG、CBH、βX和NAG活性最高;ALP活性在高羊茅处理中(33.21 nmol·g-1·h-1)最高。Pearson相关性分析显示,根际土壤βG、NAG活性与土壤有机碳(SOC)显著正相关,与NO3--N显著负相关,ALP活性与土壤有机碳和可溶性有机碳呈显著正相关(P<0.05)。黑麦草根际土壤Chao1指数最高,且Shannon指数显著高于其他处理(P<0.05)。变形菌门、酸杆菌门和放线菌门是4种禾草根际土壤细菌的优势菌门。冗余分析(RDA)结果表明,土壤速效磷主导根际土壤细菌群落组成的变化。总之,禾草能显著提高根际土壤的酶活性和养分含量,并优化根际土壤细菌群落结构,从而改善土壤微生态环境,这为土壤改良提供了科学依据。其中黑麦草可以促进土壤养分的循环与有效利用,显著增加细菌群落多样性,对于改善环境的效果最好,具有一定的推广价值。

Abstract

The purpose of this study was to investigate the effects of different grasses on the soil micro-ecological environment. In a pot experiment, four grass species: Paspalum notatumLolium perenneFestuca arundinacea and Sorghum sudanense, were selected to study the variation in rhizosphere soil enzyme activity and bacterial community composition and diversity. The experiment included unplanted (CK) pots, and soil chemical analysis and high-throughput sequencing technologies were employed, and the correlation between these data and soil physical and chemical properties was explored. It was found that, compared with CK treatment, the activities of β-1,4-glucosidase (βG), cellobiohydrolase (CBH), β-1,4-xylosidase (βX), β-1,4-N-acetylglucosaminidase (NAG) and alkaline phosphatase (ALP) in rhizosphere soil were increased by all four grass species. Furthermore, the contents of soil dissolved organic carbon (DOC), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and available phosphorus (AP) differed significantly between the rhizosphere soils of the four grasses. The activities of βG, CBH, βX and NAG were highest in S. sudanense. ALP activity was highest in F. arundinacea. Pearson correlation analysis showed that βG and NAG activities in rhizosphere soil were significantly positively correlated with soil organic carbon (SOC) and significantly negatively correlated with NO3--N. ALP activity was significantly positively correlated with SOC and DOC (P<0.05). The Chao1 index of L. perenne rhizosphere soil was the highest, and the Shannon index was significantly higher than other treatments (P<0.05). Proteobacteria, Acidobacteriota and Actinobacteriota were the dominant bacterial phyla in the rhizosphere soil of the four grass species. The results of redundancy analysis showed that soil available phosphorus was the dominant factor associated with change of bacterial community composition in the rhizosphere soil. In conclusion, grass can significantly improve the enzyme activity and nutrient content, and optimize the bacterial community structure of rhizosphere soil, so as to improve the soil micro-ecological environment. This provides a scientific basis for soil improvement. Among the tested grasses, L. perenne more strongly promoted the circulation and effective utilization of soil nutrients, and increased the diversity of bacterial communities. Thus L. perenne was the most efficacious in improving the soil rhizosphere environment and can be recommended based on these results.

Graphical abstract

关键词

禾草 / 根际土壤 / 土壤酶活性 / 细菌群落多样性

Key words

grass / rhizosphere soil / soil enzyme activity / bacteria community diversity

引用本文

引用格式 ▾
汤珊珊,胡敏. 禾本科植物根际土壤酶活性和细菌群落结构差异[J]. 草业学报, 2025, 34(08): 99-108 DOI:10.11686/cyxb2024358

登录浏览全文

4963

注册一个新账户 忘记密码

土壤微生物在有机物质的降解、腐殖质的形成及土壤养分的转化和循环中发挥着关键作用,这些微生物对土壤健康至关重要1。根际,作为植物-土壤-微生物相互作用的核心区域,是物质循环和能量流动的关键部位2。植物的适应机制影响根际的物理特性(如温度、水分可利用性)、化学特性(如pH、氧化还原电位、养分浓度、有机质含量、根系分泌物、化感作用)和生物特性(如微生物群落)。这些变化与植物对养分的可利用性相关,并受到植物种类、土壤类型、环境因子及其相互作用的影响2-4。根际土壤微生物群落结构和酶活性在碳及其他养分元素的循环中发挥作用5。例如,根际土壤微生物通过分解有机质和矿化作用来调节土壤养分的可利用性,从而促进植物对养分的吸收6-7。此外,根际微生物还分泌各种胞外酶,参与高分子量有机化合物的分解,促进碳和养分的有效性和循环35
草地是全球最大的生态系统之一,覆盖全球约20%的土地面积和70%的农业用地面积8。作为全球重要的生物多样性库,草地具有调节气候、改良土壤、维持生物多样性、提供畜产品和美化环境等生态系统功能8-10。越来越多的研究人员把关注点放到草地生态系统地上—地下互作,以揭示生态系统稳定性维持的内在机制11-12。草地植物通过根际过程影响土壤有机质和营养元素的形成与变化13-15。例如,Qi等16种植豆科植物苜蓿(Medicago sativa)相比于对照组能够显著提高根际土壤养分有效性。此外,草地植物为微生物提供了高度异质的土壤微环境,创造了适宜的生存条件,进而影响微生物群落的活性、生物量和物种组成3-417。Jian等18发现,种植赖草(Leymus secalinus)和沙生苔草(Carex praeclara)能改变根际土壤微生物群落的结构和功能,增强土壤微生物群落的氮磷循环潜力。Tomazelli等19则发现,草地植物的多样性、组成和根系特征对特定土壤细菌和真菌类群的选择具有影响。
禾本科植物,也称为单子叶开花植物家族,是地球上最重要且最丰富的植物类群之一。该科包括许多农作物和单子叶饲料作物,这些植物在动物饲养中发挥着关键作用3。此外,禾本科植物在景观设计中也具有重要的美学和文化价值20。禾本科植物根系发达,能增强土壤养分和促进碳固定,有助于维持和提高土壤健康21。Zhao等22指出,禾本科植物的存在能够增加土壤微生物丰度和多样性、微生物碳氮以及土壤酶活性。此外,由于不同禾本科植物根系分泌物和凋落物的差异,它们的根际微环境也存在一定程度的不同23
目前关于不同禾本科草种对根际土壤酶活性和微生物群落组成及多样性的研究较为有限。本研究选择了4种常见的禾本科草种:百喜草(Paspalum notatum)、黑麦草(Lolium perenne)、高羊茅(Festuca arundinacea)和苏丹草(Sorghum sudanense),旨在探索这些草种的根际土壤微生物群落和酶活性的差异。这将为评价禾草对土壤微生态的影响和改善土壤环境提供科学依据。

1 材料与方法

1.1 试验设计和土壤取样

供试土壤的采集时间为2023年5月上旬,采集地点位于江苏省常州市金坛区的一号农场,该地区属于典型的亚热带季风气候区,年均气温为15.8 ℃,年平均降水量为1128 mm。采集土壤类型为黄泥土,该土壤的基础肥力为:pH 7.74,总有机碳5.68 g·kg⁻¹,总磷0.35 g·kg⁻¹,有效磷15.03 mg·kg⁻¹,总氮0.26 g·kg⁻¹。本研究从3个点位挖掘了约0~20 cm深度的土壤,铲除有机层后,用塑料袋运输至实验室。在实验室内,土壤风干、研磨,并通过3 mm塑料网筛混匀备用。本研究选取了4种典型禾本科草种:百喜草、黑麦草、高羊茅和苏丹草,这些草种均来源于北京克劳沃草业技术开发中心和北京绿冠草业科技发展中心。

本研究于2023年7月开展室内盆栽试验,每个盆栽器皿的尺寸为直径16 cm×高度20 cm,土壤填充量为1.5 kg。盆栽分为4种禾草处理(百喜草、黑麦草、高羊茅和苏丹草)和一个不种植对照(CK),共5种处理,每种处理设置4个重复。每盆播种60粒种子,发芽后进行间苗处理,每盆保留30株。种植期间,保持土壤含水率约70%。试验在植物培养间进行,白天温度为25 ℃(12 h),夜晚温度为18 ℃(12 h),光强为5400 lx。试验期间无施肥处理。植物生长105 d后,挑选3个盆栽进行样品收集,将根系从盆钵中松动,并用毛刷收集根际土壤。采集的土壤样品经过2 mm筛子筛分,混合均匀后分为3部分:第一部分风干,用于测定土壤理化性质;第二部分在4 ℃下保存,用于测定水溶性营养物质含量和酶活性;第三部分在-20 ℃下冷冻保存,用于土壤微生物群落结构分析。

1.2 土壤理化性质分析

土壤理化性质测定采用以下方法进行24:用电位法测定土壤pH,用重铬酸钾容量法-外加热法测定土壤有机碳(soil organic carbon, SOC)含量;用紫外分光光度计(TU-1900,北京)测定土壤硝态氮(nitrate nitrogen, NO3--N)含量,用靛酚蓝比色法测定土壤铵态氮(ammonium nitrogen, NH4+-N)含量;用碳酸氢钠-钼蓝比色法测定土壤速效磷(available phosphorus, AP)含量;用去离子水提取土壤可溶性有机碳(dissolved organic carbon, DOC),并用TOC分析仪(Multi N/C 2100S,德国耶拿)测定其含量。

1.3 土壤酶活性分析

碳循环涉及3种酶:β-1,4-葡萄糖苷酶(β-1,4-glucosidase, βG)、纤维二糖水解酶(cellobiohydrolase, CBH)和β-1,4-木糖苷酶(β-1,4-xylosidase, βX)。与氮循环相关的酶为β-1,4-N-乙酰葡糖氨糖苷酶(β-1,4-N-acetylglucosaminidase, NAG)。参与土壤磷循环的酶为碱性磷酸酶(alkaline phosphatase, ALP)。其活性通过标准微孔板荧光法测定。该方法利用底物在酶催化下释放4-甲基伞形酮酰(4-methylumbelliferyl, 4-MUB),通过荧光检测来表征酶活性25

1.4 土壤微生物群落分析

使用DNeasy 96 PowerSoil Pro Kit(QIAGEN,德国)提取土壤DNA,提取的土壤总DNA浓度和纯度用核酸定量仪NanoDrop 2000(Thermo Scientific,美国)进行检测,用1%琼脂糖凝胶电泳检测DNA完整性。提取的基因组DNA为模板,扩增细菌16S rRNA基因,所用通用引物为338F(5′-ACTCCTACGGGAGGCAGCAG-3′)和806R(5′-GGACTACHVGGGTWTCTAAT-3′)。PCR试验采用TransStart Fastpfu DNA Polymerase (TransGen Biotech,北京),反应体系(20 μL):5×FastPfu Buffer(4 μL),2.5 mmol·L-1 dNTPs (2 μL),上游引物(5 μmol·L-1)和下游引物(5 μmol·L-1)各0.8 μL, FastPfu Polymerase(0.4 μL),BSA(0.2 μL),Template DNA 10 ng,补ddH2O至20 μL。反应条件:95 ℃ 3 min,95 ℃ 30 s,55 ℃ 30 s,72 ℃ 45 s,共进行27个循环;72 ℃ 10 min。获得PCR产物后,用2%琼脂糖凝胶电泳检测PCR产物,PCR产物目的条带大小正确,浓度合适后用于后续高通量测序。应用Illumina MiSeq平台进行高通量DNA测序,PCR及测序均由上海美吉生物医药科技有限公司完成。

首先使用FLASH26https://ccb.jhu.edu/software/FLASH/index.shtml,version 1.2.11)软件对16S rRNA 测序原始数据拼接,并用Fastp27https://github.com/OpenGene/fastp,0.19.6)对序列质量进行质控和过滤,再用Usearch(http://www.drive5.com/usearch/,version 11)去除嵌合体和计算操作分类单元(operational taxonomic unit,OTU),并通过Uparse28http://www.drive5.com/uparse/,version 11)以97%相似性阈值对序列进行聚类。物种注释通过RDP Classifier29https://sourceforge.net/projects/rdp-classifier/,version 2.13)进行比对,使用的比对数据库为SILVA 138数据库30https://www.arb-silva.de/)。使用Mothur31https://www.mothur.org/wiki/Download_mothur,version 1.30.2)软件分析α多样性,利用QIIME(http://qiime.org/install/index.html,version 1.9.1)软件计算β多样性距离矩阵32

1.5 数据处理与分析

通过IBM SPSS 27.0软件对不同禾草根际土壤理化性质和生物学性质进行单因素方差分析(ANOVA)和显著性检验,显著性水平设为α=0.05。同样,使用SPSS 27.0软件进行Pearson相关性分析,以检验环境参数与土壤酶、微生物多样性之间的关系。基于R语言(version 3.3.1)工具绘制相对丰度(relative abundance)图、主坐标分析(principal coordinates analysis, PCoA)结果图。使用R语言vegan包进行细菌优势门与土壤理化性质、土壤酶活性冗余分析(redundancy analysis, RDA)。

2 结果与分析

2.1 不同禾本科草种的根际土壤理化性质差异

不同禾草处理根际土壤pH值和有机碳含量没有显著性差异(P>0.05,表1)。与CK处理相比,所有种植禾本科草种的根际土壤可溶性有机碳(DOC)含量显著增加,其中黑麦草和高羊茅的DOC含量显著高于百喜草和苏丹草处理(P<0.05)。百喜草、黑麦草、高羊茅和苏丹草的根际土壤硝态氮(NO3--N)含量均显著低于CK处理,其中黑麦草的NO3--N含量显著高于其他3种禾草处理,分别比百喜草、高羊茅和苏丹草处理高出119.39%、52.10%和105.68%(P<0.05)。百喜草和高羊茅的根际土壤铵态氮(NH4+-N)含量显著高于CK和苏丹草处理,分别比CK和苏丹草处理高出8.05%和7.77%、7.27%和6.99%(P<0.05)。黑麦草和高羊茅的速效磷(AP)含量显著高于其他组(P<0.05),其中高羊茅的含量最高,黑麦草次之。

2.2 不同禾本科草种根际土壤酶活性的差异

2.2.1 不同禾草根际土壤酶活性

种植禾草能提高根际土壤中βG、CBH和βX的活性(表2),这3种碳循环相关酶的活性大小顺序为:苏丹草>高羊茅>黑麦草>百喜草>CK。苏丹草根际土壤中的βG活性最高,显著高于CK和百喜草处理,分别提高了78.86%和43.88%(P<0.05)。高羊茅和苏丹草根际土壤CBH和βX活性显著高于其他处理(P<0.05)。苏丹草处理根际土壤CBH活性最高,比CK、百喜草、黑麦草和高羊茅处理分别高出160.00%、135.08%、134.23%、46.40%。苏丹草根际土壤βX活性最高,比CK、百喜草、黑麦草和高羊茅处理分别高出87.08%、81.50%、60.17%和10.50%,但高羊茅和苏丹草之间的βX活性差异不显著(P>0.05)。苏丹草根际土壤中的NAG活性最高,分别比CK、百喜草、黑麦草和高羊茅处理高出157.84%、83.94%、146.41%和83.65%。高羊茅根际土壤ALP活性最高,分别比CK、百喜草和黑麦草处理高出58.52%、37.46%和26.47%(P<0.05)。

2.2.2 不同禾草根际土壤酶活性与理化性质的相关性

种植不同禾本科草种的根际土壤理化性质与酶活性之间存在不同程度的相关性(表3)。βG和NAG活性均与土壤有机碳呈显著正相关,而与硝态氮呈显著负相关(P<0.05)。ALP活性与土壤有机碳和可溶性有机碳均呈显著正相关(P<0.05)。但βG、CBH、βX、NAG和ALP活性与pH值、铵态氮和速效磷均无显著相关性(P>0.05)。

2.3 不同禾草根际土壤理化性质、酶活性与微生物组成与多样性的相关性分析

2.3.1 不同禾草根际土壤细菌Alpha多样性指数分析

5组样品的细菌文库覆盖率均达到98%,表明测序深度充分揭示了土壤样本的微生物组成(表4)。在不同禾草根际土壤的Chao1指数中,黑麦草处理最高(5470),其次是百喜草(5353),高羊茅最低(4918),并且高羊茅的Chao1指数显著低于其他处理(P<0.05)。黑麦草处理的细菌Shannon指数(7.21)显著高于其他处理(P<0.05)。苏丹草处理的细菌Shannon指数(6.90)显著低于其他处理(P<0.05)。

2.3.2 不同禾草根际土壤细菌多样性分析

使用主坐标分析(principal co-ordinates analysis, PCoA)评估不同禾草根际土壤细菌群落的Beta多样性。5种根际土壤细菌群落明显分开(R=0.9541,P=0.001),说明这些根际土壤在细菌群落结构上存在显著差异(图1)。高羊茅和苏丹草的细菌群落与其他样本的距离较远,表明这两种禾草的根际土壤细菌群落结构与其他样本存在较大差异。

在所有处理下,土壤细菌的主要门类包括变形菌门(Proteobacteria,占26.10%~35.83%)、酸杆菌门(Acidobacteriota,占16.72%~19.94%)、放线菌门(Actinobacteriota,占8.04%~20.57%)、绿弯菌门(Chloroflexi,占7.39%~11.08%)、拟杆菌门(Bacteroidota,占6.36%~8.21%)和芽单胞菌门(Gemmatimonadota,占4.00%~6.67%),这些门类在各处理中的细菌群落占比均超过80%(图2)。苏丹草样品中的变形菌门相对丰度最高(35.83%)。高羊茅样品中的放线菌门相对丰度最高(20.57%)。高羊茅样品中的绿弯菌门相对丰度最高(11.08%),黑麦草次之(10.91%)。

2.3.3 土壤理化性质、酶活性对细菌群落的影响

为了进一步揭示不同禾草种植对土壤微生物群落的影响机制,本研究探讨了微生物群落结构与理化性质、酶活性之间的相关性,以揭示禾草-土壤-微生物之间的相互关系。根际细菌群落的Shannon指数与硝态氮显著正相关(表5),而与有机碳显著负相关(P<0.05)。土壤理化性质、酶活性与根际土壤细菌门水平的冗余分析(RDA)结果(图3)表明,AP对细菌群落影响较大。变形菌门与NH4+-N显著负相关(P<0.05)。放线菌门与AP和DOC显著正相关(P<0.05)。绿弯菌门与AP、NH4+-N、DOC显著正相关(P<0.05)。芽单胞菌门与DOC、βX和ALP活性均显著负相关(P<0.05)。这些结果表明,土壤理化性质和酶活性对土壤细菌的相对丰度有一定的影响。

3 讨论

本研究中,不同禾本科草根际土壤可溶性有机碳(DOC)差异显著,DOC含量从高到低依次为:高羊茅、黑麦草、百喜草、苏丹草以及CK。DOC在土壤养分循环中发挥核心作用,植物通过根系周转和分泌向土壤提供DOC,因此DOC的数量和质量会因植物种类而异33-34。草地植物通过根际分泌物改变有机质状态,进而加速氮素循环12。硝态氮和铵态氮易被植物吸收利用,本研究中,不同禾本科草的种植显著降低了土壤硝态氮含量。百喜草和高羊茅的根际土壤铵态氮含量显著高于苏丹草,这可能与苏丹草对氮的利用效率更高有关。黑麦草和高羊茅的根际速效磷含量显著高于其他处理,推测是由于植物对营养元素的吸收利用以及通过凋落物、根系周转和分泌物对土壤磷的有效性和动态产生影响1835

土壤酶参与土壤有机质的分解和矿化,其活性通常与土壤碳和养分的循环密切相关36。与未种植禾本科草相比,种植不同禾本科草能提高根际土壤中的βG、CBH、βX、NAG和ALP活性,且不同禾草根际土壤显示草种差异,这可能是由于不同草种的根系分泌物对养分活化和微生物活动的影响差异所导致的3537-38。苏丹草处理的βG活性最高,这与苏丹草土壤有机碳含量较高的结果一致,并且Pearson相关性分析表明βG活性与土壤有机碳含量显著正相关。有研究结果表明,土壤有机质含量高时,土壤碳转化酶的活性也会相应提高39。NAG活性与土壤有机碳含量显著正相关,表明NAG在分解土壤有机物和营养循环中起着重要作用40。NAG活性与硝态氮含量显著负相关,这一结果在黄土高原草地的研究中也有报道41。ALP是评估土壤中有机磷矿化潜力和磷有效性的指标36。ALP活性与有机碳含量显著正相关,说明土壤碳对土壤酶活性影响起关键作用40

根际土壤微生物是土壤碳、氮、磷等元素转化的驱动力,越来越多的证据表明,根际土壤微生物群落主要由植物种类决定342-43。本研究表明,种植不同禾草在不同程度上改变了根际土壤细菌群落,这与根系的发育及根分泌物的化学成分有关1544。不同禾草根际土壤细菌的Alpha多样性指数存在一定差异。黑麦草处理的Chao1指数、Shannon指数最高,说明黑麦草根际土壤中的细菌丰富度和多样性最高。本研究中,不同种植处理下的根际土壤微生物菌门表现出相似性,其中变形菌门和酸杆菌门是所有处理中的主要菌门,这与其他学者对草地土壤细菌群落结构的研究结果一致3145。苏丹草根际土壤中变形菌门的相对丰度最高,这可能是由于牧草类植物根系发达,为满足自身需求并促进植物生长代谢,苏丹草根际土壤中聚集了较多变形菌门细菌以分解和利用有机物46。放线菌能分解有机物、溶解磷素、固定氮素及生产次生代谢产物847。高羊茅根际土壤中放线菌门相对丰度最高,这可能是因为高羊茅的根系分泌物更有利于放线菌门的生长,从而对土壤生态系统和植物生长产生积极影响。黑麦草和高羊茅根际土壤中,绿弯菌门的相对丰度相对较高,这与Borowik等3的研究结果一致。此外,有研究表明,绿弯菌门能对土壤中的有毒物质进行生物降解48,因此种植黑麦草和高羊茅有助于改善土壤生态功能。不同草种根际土壤中的优势菌门相对丰度不同,这表明根际土壤细菌群落结构存在一定的草种特异性。

土壤微生物群落受到非生物环境因素的影响,如土壤水分含量49、土壤pH值50和土壤有机碳含量51。根际土壤微生物群落结构的变化与土壤的理化性质显著相关52-54。本研究表明,Shannon指数与硝态氮和有机碳存在显著相关性,这些指标与土壤养分状况密切相关,因此细菌群落的Shannon指数在一定程度上可以反映土壤养分状况。本研究表明,速效磷、可溶性有机碳、铵态氮及酶(βX、ALP)与根际土壤细菌前六大类群的相对丰度相关,其中速效磷是影响微生物群落结构的主要因素,这说明速效磷是影响4种禾草根际细菌群落组成的重要因素1255。本研究发现,禾草根际土壤细菌放线菌门的相对丰度与土壤速效磷呈正相关,这与Song等31的研究结果一致。

4 结论

不同禾草根际土壤中的可溶性有机碳、铵态氮、硝态氮和速效磷含量存在差异。与CK处理相比,4种禾草生长均提高了根际土壤βG、CBH、βX、NAG和ALP活性。苏丹草根际土壤在βG、CBH、βX和NAG活性方面表现突出,而高羊茅根际土壤在ALP活性方面表现显著。不同禾草类型的根际土壤细菌群落多样性存在显著差异,黑麦草根际土壤细菌多样性和丰富度处于最高水平。变形菌门、酸杆菌门和放线菌门是4种禾草根际土壤细菌的优势菌门。土壤速效磷是影响根际土壤细菌群落结构的主要因素,驱动了根际土壤细菌优势门的变化。综上所述,禾草种植均能提升根际土壤酶活性,进而改善土壤质量。其中黑麦草处理的细菌多样性得到了显著提升,对改善土壤微环境的效果最为明显,这将有助于提高后续作物的生长和产量,尤其在低肥力土壤中,本研究也为生态农业的实践提供了理论支持。

参考文献

[1]

Aqeel M, Ran J Z, Hu W G, et al. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. Chemosphere, 2023, 318: 137924.

[2]

Mueller C W, Baumert V, Carminati A, et al. From rhizosphere to detritusphere-Soil structure formation driven by plant roots and the interactions with soil biota. Soil Biology and Biochemistry, 2024, 193: 109396.

[3]

Borowik A, Wyszkowska J, Kucharski J. Impact of various grass species on soil bacteriobiome. Diversity, 2020, 12(6): 212.

[4]

Stefanowicz A M, Kapusta P, Stanek M, et al. Herbaceous plant species and their combinations positively affect soil microorganisms and processes and modify soil physicochemical properties in a mesocosm experiment. Forest Ecology and Management, 2023, 532: 120826.

[5]

Xiao L, Ma Y Y, Yuwen P Y, et al. Mixed grass species differ in rhizosphere microbial community structure and function response to drought compared to monocultures. Rhizosphere, 2022, 24: 100615.

[6]

Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478-486.

[7]

Zhou J, Liu C Y, Shi L L, et al. Rhizosphere influence on microbial functions: consequence for temperature sensitivity of soil organic matter decomposition at early stage of plant growth. Plant and Soil, 2024, 494(1): 95-109.

[8]

Mencel J, Mocek-Płóciniak A, Kryszak A. Soil microbial community and enzymatic activity of grasslands under different use practices: A review. Agronomy, 2022, 12(5): 1136.

[9]

Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2(10): 720-735.

[10]

Chang J F, Ciais P, Gasser T, et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 2021, 12(1): 118.

[11]

Bardgett R D. Linking aboveground-belowground ecology: a short historical perspective. Aboveground-Belowground Community Ecology, 2018, 234: 1-17.

[12]

Ma Y, Zhang D G. Regulation mechanisms of rhizosphere nutrient cycling processes in grassland: A review. Acta Prataculturae Sinica, 2020, 29(11): 172-182.

[13]

马源, 张德罡. 草地根际过程对养分循环调控机制研究进展. 草业学报, 2020, 29(11): 172-182.

[14]

Wang Z, Jin K, Ding Y, et al. The mechanism of plants-soil microbial feedback in grassland succession. Chinese Journal of Grassland, 2022, 44(1): 95-103.

[15]

王珍, 金轲, 丁勇, 植物-土壤微生物反馈在草地演替过程中的作用机制. 中国草地学报, 2022, 44(1): 95-103.

[16]

Rumpel C, Crème A, Ngo P T, et al. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 353-371.

[17]

Gong X W, Feng Y, Dang K, et al. Linkages of microbial community structure and root exudates: Evidence from microbial nitrogen limitation in soils of crop families. Science of the Total Environment, 2023, 881: 163536.

[18]

Qi J J, Fu D Q, Wang X Z, et al. The effect of alfalfa cultivation on improving physicochemical properties soil microorganisms community structure of grey desert soil. Scientific Reports, 2023, 13(1): 13747.

[19]

Haney R L, Kiniry J R, Johnson M V V. Soil microbial activity under different grass species: Underground impacts of biofuel cropping. Agriculture Ecosystems & Environment, 2010, 139(4): 754-758.

[20]

Jian T K, Xia Y, He R P, et al. The influence of planting Carex praeclara and Leymus secalinus on soil properties and microbial community in a Zoige desertified alpine grassland. Global Ecology and Conservation, 2022, 34: e02002.

[21]

Tomazelli D, Peron R A D, Mendes S D C, et al. Plant diversity and root traits shape rhizosphere microbial communities in natural grasslands and cultivated pastures. Rhizosphere, 2024, 29: 100864.

[22]

Tomaskin J, Tomaskinova J. Evaluation of assortment of ornamental grasses and their environmental importance in the urban landscape. Journal of Environmental Protection and Ecology, 2020, 21(5): 1673-1682.

[23]

Sun D Y, Li J Z, Gong Y B. Effects of planting density of Poaceae species on slope community characteristics and artificial soil nutrients in high-altitude areas. Sustainability, 2023, 15(10): 8321.

[24]

Zhao Y F, Mao W, Pang L X, et al. Influence of Phragmites communis and Zizania aquatica on rhizosphere soil enzyme activity and bacterial community structure in a surface flow constructed wetland treating secondary domestic effluent in China. Environmental Science and Pollution Research, 2020, 27(21): 26141-26152.

[25]

Wang P, Wang Y, Wu Q S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil & Tillage Research, 2016, 155: 54-61.

[26]

Bao S D. Soil agrochemical analysis (the third edition). Beijing: China Agriculture Press, 2000.

[27]

鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000.

[28]

Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315.

[29]

Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963.

[30]

Chen S, Zhou Y, Chen Y, et al. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.

[31]

Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996-998.

[32]

Lan Y M, Wang Q, Cole J R, et al. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS One, 2012, 7(3): e32491.

[33]

Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2012, 41(D1): D590-D596.

[34]

Song Q, Song X S, Deng X, et al. Effects of plant growth promoting rhizobacteria microbial inoculants on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica annual seedlings. Scandinavian Journal of Forest Research, 2020, 36(4): 249-262.

[35]

Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336.

[36]

Smith D J, Duston S, Barney J N, et al. Dissolved organic carbon characteristics are associated with changes in soil microbiome under different plant species. Applied Soil Ecology, 2024, 196: 105313.

[37]

Khalid M, Soleman N, Jones D L. Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil. Soil Biology and Biochemistry, 2007, 39(1): 378-381.

[38]

Chen X L, Chen H Y H, Chang S X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nature Ecology & Evolution, 2022, 6(8): 1112-1121.

[39]

Luo L, Meng H, Gu J D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. Journal of Environmental Management, 2017, 197: 539-549.

[40]

Delgado-Baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 2016, 7(1): 10541.

[41]

Daunoras J, Kačergius A, Gudiukaitė R. Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology, 2024, 13(2): 85.

[42]

Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264.

[43]

Yang F, Tian J, Fang H J, et al. Spatial heterogeneity of microbial community and enzyme activities in a broad-leaved Korean pine mixed forest. European Journal of Soil Biology, 2018, 88: 65-72.

[44]

Zheng Z M. Changes in soil physicochemical and biological properties of grassland in different years of enclosure on the Loess Plateau. Yangling: Northwest A & F University, 2019.

[45]

郑周敏. 黄土高原不同封育年限草地土壤理化和生物学性质变化. 杨凌: 西北农林科技大学, 2019.

[46]

Zhang C, Liu G B, Xue S, et al. Changes in rhizospheric microbial community structure and function during the natural recovery of abandoned cropland on the Loess Plateau, China. Ecological Engineering, 2015, 75: 161-171.

[47]

Ladygina N, Hedlund K. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biology and Biochemistry, 2010, 42(2): 162-168.

[48]

Saleh D, Jarry J, Rani M, et al. Diversity, distribution and multi-functional attributes of bacterial communities associated with the rhizosphere and endosphere of timothy (Phleum pratense L.). Journal of Applied Microbiology, 2019, 127(3): 794-811.

[49]

Zhang H R, Fu G. Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet. Land Degradation & Development, 2021, 32(4): 1821-1832.

[50]

Li Q M, Li S J, Wang X L, et al. Influences of changing carbon inputs on soil microbial carbon metabolism in natural secondary forest in Yimeng mountainous area. Acta Ecologica Sinica, 2021, 41(10): 4110-4119.

[51]

李秋梅, 黎胜杰, 王欣丽, 改变碳输入对沂蒙山区典型次生林土壤微生物碳源代谢功能的影响. 生态学报, 2021, 41(10): 4110-4119.

[52]

Das R, Bharadwaj P, Thakur D. Insights into the functional role of Actinomycetia in promoting plant growth and biocontrol in tea (Camellia sinensis) plants. Archives of Microbiology, 2024, 206(2): 65.

[53]

Chen H S, Liu S P, Liang G Q, et al. Effects of three cropping patterns on bacterial community structure and diversity in rhizosphere of broccoli. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1457-1465.

[54]

陈海生, 刘守平, 梁国钱, 3种西兰花种植方式对根际土壤细菌群落结构和多样性的影响研究. 核农学报, 2021, 35(6): 1457-1465.

[55]

Li M, Zhang K R, Yan Z Q, et al. Soil water content shapes microbial community along gradients of wetland degradation on the Tibetan Plateau. Frontiers in Microbiology, 2022, 13: 824267.

[56]

Ma X W, Ren B H, Yu J X, et al. Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China. Frontiers in Microbiology, 2023, 14: 1205574.

[57]

Shu X Y, Hu Y F, Liu W J, et al. Linking between soil properties, bacterial communities, enzyme activities, and soil organic carbon mineralization under ecological restoration in an alpine degraded grassland. Frontiers in Microbiology, 2023, 14: 1131836.

[58]

Philippot L, Chenu C, Kappler A, et al. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 2024, 22(4): 226-239.

[59]

Wang L X, Pang X Y, Li N, et al. Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in eastern Tibetan Plateau. Catena, 2020, 194: 104694.

[60]

Gong B, He Y, Luo Z B, et al. Response of rhizosphere soil physicochemical properties and microbial community structure to continuous cultivation of tobacco. Annals of Microbiology, 2024, 74(1): 4.

[61]

Li L S, Wang Z Y, Bai H H, et al. Structure and diversity of bacterial communities in rhizosphere soil of four plant species in Mu Us Sandy Land. Journal of Arid Land Resources and Environment, 2024, 38(2): 142-149.

[62]

李林山, 王梓瑜, 白慧慧, 毛乌素沙地4种不同植物根际土壤细菌群落结构和多样性特征. 干旱区资源与环境, 2024, 38(2): 142-149.

基金资助

江苏省研究生科研与实践创新计划项目(SJCX24_1644)

AI Summary AI Mindmap
PDF (1171KB)

304

访问

0

被引

详细

导航
相关文章

AI思维导图

/