磷添加和丛枝菌根真菌对羊草根系构型以及植株养分吸收利用的影响
郭亮 , 胡雨彤 , 廖雨 , 龚成毓 , 杨晓燕 , 管上淇 , 鞠成琦
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 165 -178.
磷添加和丛枝菌根真菌对羊草根系构型以及植株养分吸收利用的影响
The impact of phosphorus addition and arbuscular mycorrhizal fungi on root architecture and nutrient utilization in Leymus chinensis
本研究探讨了磷添加和丛枝菌根真菌(AMF)侵染对羊草根系构型及养分吸收利用的影响。试验采用根袋盆栽方法,设置4个磷水平处理(P0: 0 mg·kg-1, P1: 11.32 mg·kg-1, P2: 22.63 mg·kg-1, P3: 33.95 mg·kg-1)和两种AMF处理(接种与未接种)交互作用共8个处理,每个处理重复5次。结果表明,磷和AMF处理显著影响羊草的根系生物量,接种AMF显著提高P1和P2处理下的根系生物量。AMF处理提高了总根长和总生物量,但对根平均直径、总根体积和分枝数有降低趋势。土壤理化性质分析表明,AMF处理提高了碱性磷酸酶活性和速效磷含量。养分分析表明AMF接种和磷处理显著影响植株P含量,降低了氮磷比,且AMF在高磷处理下提高了磷利用效率。此外,磷和AMF的交互作用对分形维数、分形丰度、根袋内pH、土壤速效磷和羊草地上部分磷含量均表现出显著影响。总体而言,P1施磷和AMF接种显著改善了羊草的根系生物量和构型,提高了养分吸收与利用效率。
This study investigated the effects of phosphorus addition and arbuscular mycorrhizal fungus (AMF) inoculation on the root architecture and nutrient absorption of Leymus chinensis. A pot experiment was conducted with four phosphorus levels (P0: 0 mg·kg-1; P1: 11.32 mg·kg-1; P2: 22.63 mg·kg-1; P3: 33.95 mg·kg-1) and two AMF treatments (inoculated and uninoculated), resulting in a total of eight treatments, each with five replicates. It was found that phosphorus and AMF treatments significantly affected root biomass of L. chinensis. Root biomass was significantly increased under P1 and P2 treatments, while AMF treatment increased total root length and total biomass but tended to decrease root average diameter, root volume, and number of branches. Soil physicochemical analysis indicated that AMF treatment enhanced alkaline phosphatase activity and soil available phosphorus content. Nutrient analysis revealed that AMF inoculation and phosphorus treatment significantly increased plant phosphorus content, reduced the nitrogen to phosphorus ratio, and increased phosphorus utilization efficiency (PUE) under high phosphorus conditions. Moreover, a significant interaction was observed between phosphorus and AMF, characterized by significant change in fractal dimension, fractal abundance, pH inside root bags, soil available phosphorus, and phosphorus content in the aboveground parts of L. chinensis. In summary, appropriate phosphorus application and P1 AMF inoculation significantly improved root biomass and architecture of L. chinensis, enhancing nutrient absorption and utilization efficiency.
羊草 / 丛枝菌根真菌 / 根系构型 / 养分吸收 / 养分利用
Leymus chinensis / arbuscular mycorrhizal fungi / root architecture / nutrient absorption / nutrient utilization
| [1] |
Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264. |
| [2] |
Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant. Plant Physiology, 2011, 156(3): 997-1005. |
| [3] |
Wang L, Zhang L, George T S, et al. A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization. New Phytologist, 2023, 238(2): 859-873. |
| [4] |
Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology, 2011, 156(3): 1041-1049. |
| [5] |
Begum N, Qin C, Ahanger M A, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 2019, 10: 1068. |
| [6] |
Qiu Q, Bender S F, Mgelwa A S, et al. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: a Meta-analysis. Science of the Total Environment, 2022, 807(1): 150857. |
| [7] |
Chandrasekaran M. A Meta-analytical approach on arbuscular mycorrhizal fungi inoculation efficiency on plant growth and nutrient uptake. Agriculture, 2020, 10(9): 370. |
| [8] |
Qi S, Wang J, Wan L, et al. Arbuscular mycorrhizal fungi contribute to phosphorous uptake and allocation strategies of Solidago canadensis in a phosphorous-deficient environment. Frontiers in Plant Science, 2022, 13(2): 831654. |
| [9] |
Bruce A, Smith S E, Tester M. The development of mycorrhizal infection in cucumber: effects of P supply on root growth, formation of entry points and growth of infection units. New Phytologist, 1994, 127(3): 507-514. |
| [10] |
Lekberg Y, Jansa J, McLeod M, et al. Carbon and phosphorus exchange rates in arbuscular mycorrhizas depend on environmental context and differ among co-occurring plants. New Phytologist, 2024, 242(4): 1576-1588. |
| [11] |
Zhang D, Lyu Y, Li H, et al. Neighbouring plants modify maize root foraging for phosphorus: coupling nutrients and neighbours for improved nutrient-use efficiency. New Phytologist, 2020, 226(1): 244-253. |
| [12] |
Smith S E, Read D J. Mycorrhizal symbiosis (the third edition). San Diego: Academic Press, 2008. |
| [13] |
Plassard C, Dell B. Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 2010, 30(9): 1129-1139. |
| [14] |
Javot H, Penmetsa R V, Terzaghi N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1720-1725. |
| [15] |
Smith F A, Jakobsen I, Grønlund M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 2011, 156(3): 1050-1057. |
| [16] |
Xu H B, Xin X P, Baoyintaogetao, et al. Effects of grazing on biomass distribution in Leymus chinensis meadow steppe of Hulunbuir. Acta Agrestia Sinica, 2020, 28(3): 768-774. |
| [17] |
许宏斌, 辛晓平, 宝音陶格涛, 放牧对呼伦贝尔羊草草甸草原生物量分布的影响. 草地学报, 2020, 28(3): 768-774. |
| [18] |
Li Y, Gong J R, Liu M, et al. Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China. Chinese Journal of Plant Ecology, 2020, 44(6): 642-653. |
| [19] |
李颖, 龚吉蕊, 刘敏, 不同放牧强度下内蒙古温带典型草原优势种植物防御策略. 植物生态学报, 2020, 44(6): 642-653. |
| [20] |
Qi Y C, Dong Y S, Geng Y B, et al. The progress in the carbon cycle researches in grassland ecosystem in China. Progress in Geography, 2003, 22(4): 342-352. |
| [21] |
齐玉春, 董云社, 耿元波, 我国草地生态系统碳循环研究进展.地理科学进展, 2003, 22(4): 342-352. |
| [22] |
Balei. Competition and coexistence of Leymus chinensis and its main companion species in the Songnen grasslands. Changchun: Northeast Normal University, 2005. |
| [23] |
巴雷.松嫩草地羊草与其主要伴生种竞争与共存研究. 长春: 东北师范大学,2005. |
| [24] |
Zhen L N, Wang R M, Zhou F, et al. Influence of AM fungi on the growth of Leymus chinensis under phosphorus applying at different rate. Chinese Journal of Grassland, 2015, 37(6): 56-61. |
| [25] |
甄莉娜, 王润梅, 周凤, 不同施磷水平下AM真菌对羊草生长的影响.中国草地学报, 2015, 37(6): 56-61. |
| [26] |
Shan L W, Zhang Q, Zhu R F, et al. Effects of AMF on growth and photosynthetic physiological characteristics of Leymus chinensis and Medicago sativa with and without nitrogen and phosphorus application. Acta Prataculturae Sinica, 2020, 29(8):46-57. |
| [27] |
单立文, 张强, 朱瑞芬, 氮、磷添加下AMF对羊草和苜蓿生长与光合生理特性的影响. 草业学报, 2020, 29(8): 46-57. |
| [28] |
Shan L S. Studies on morphology and function of root of typical desert plant and its drought-resistant physiology characteristics on northwest China. Lanzhou: Gansu Agricultural University, 2013. |
| [29] |
单立山. 西北典型荒漠植物根系形态结构和功能及抗旱生理研究. 兰州: 甘肃农业大学, 2013. |
| [30] |
Ketipearachchi K W, Tatsumi J. Local fractal dimensions and multifractal analysis of the root system of legumes. Plant Production Science, 2000, 3(3): 289-295. |
| [31] |
Liu R J, Luo X S. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytologist, 1994, 128(1): 89-92. |
| [32] |
Bao S D. Soil agrochemical analysis (the third edition). Beijing: China Agriculture Press, 2000. |
| [33] |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. |
| [34] |
Lyu Y, Tang H L, Li H G, et al. Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Frontiers in Plant Science, 2016, 7: 1939-1954. |
| [35] |
Karlova R, Boer D, Hayes S, et al. Root plasticity under abiotic stress. Plant Physiology, 2021, 187(3): 1057-1070. |
| [36] |
Razaq M, Zhang P, Shen H, et al. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One, 2017, 12(2): e0171321. |
| [37] |
Vain S, Tamm I, Tamm Ü, et al. Negative relationship between topsoil root production and grain yield in oat and barley. Agriculture, Ecosystems & Environment, 2023, 349(2): 108467. |
| [38] |
Sun J, Rong Z, Yang L, et al. Effects of AMF inoculation on the growth, photosynthesis and root physiological morphology of root-pruned Robinia pseudoacacia seedlings. Tree Physiology, 2024, 44(1): tpad130. |
| [39] |
Zhang T, Zou X H, Li L X, et al. Research progress on the cost and benefit of root acquisition metabolism from plant resources. Journal of Northwest Forestry University, 2023, 38(4): 149-155. |
| [40] |
张婷, 邹显花, 李林鑫, 根系获取资源过程中的代谢成本权衡策略研究进展. 西北林学院学报, 2023, 38(4): 149-155. |
| [41] |
Liu D. Root developmental responses to phosphorus nutrition. Journal of Integrative Plant Biology, 2021, 63(6): 1065-1090. |
| [42] |
de Souza Kulmann M S, Aguilar M V M, Tassinari A, et al. Effects of increasing soil phosphorus and association with ectomycorrhizal fungi (Pisolithus microcarpus) on morphological, nutritional, biochemical, and physiological parameters of Pinus taeda L. Forest Ecology and Management, 2023, 544: 121207. |
| [43] |
Gruber B D, Giehl R F H, Friedel S, et al. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, 2013, 163(1): 161-179. |
| [44] |
de Vries J, Evers J B, Kuyper T W, et al. Mycorrhizal associations change root functionality: a 3D modelling study on competitive interactions between plants for light and nutrients. New Phytologist, 2021, 231(3): 1171-1182. |
| [45] |
Walk T C, Van Erp E, Lynch J P. Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Annals of Botany, 2004, 94(1): 119-128. |
| [46] |
Yang M Q, Wu R C, Wang X H, et al. Effects of slow-release fertilizer and mycorrhizal fungi on the root growth and architecture of Cyclobalanopsis gilva container seedlings. Journal of Plant Nutrition and Fertilizer, 2023, 29(9): 1761-1770. |
| [47] |
杨孟晴, 吴仁超, 王秀花, 赤皮青冈容器苗根系生长和构型对缓释肥和菌根菌的响应. 植物营养与肥料学报, 2023, 29(9): 1761-1770. |
| [48] |
Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157(3): 423-447. |
| [49] |
Qin M, Zhang Q, Pan J, et al. Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. European Journal of Soil Science, 2020, 71(1): 84-92. |
| [50] |
Yu L, Zhang H, Zhang W, et al. Cooperation between arbuscular mycorrhizal fungi and plant growth-promoting bacteria and their effects on plant growth and soil quality. PeerJ, 2022, 10(1): e13080. |
| [51] |
Delavaux C S, Smith-Ramesh L M, Kuebbing S E. Beyond nutrients: a Meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 2017, 98(8): 2111-2119. |
| [52] |
Li Y L, Mao W, Zhao X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China. Environmental Science, 2010, 31(8): 1716-1725. |
| [53] |
李玉霖, 毛伟, 赵学勇, 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 2010, 31(8): 1716-1725. |
新疆维吾尔自治区自然科学基金(2022D01A187)
新疆维吾尔自治区自然科学基金(2019D01B19)
/
| 〈 |
|
〉 |