有机-无机改良物料对盐碱地土壤质量及湖南稷子产量的影响
张邦彦 , 谢小伟 , 张朝辉 , 武晋民 , 王彬 , 许兴
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 15 -29.
有机-无机改良物料对盐碱地土壤质量及湖南稷子产量的影响
Effect of organic-inorganic amendments on the quality of saline-alkaline soil and yield of Echinochloa frumentacea
为探究有机-无机改良物料配施对盐碱土的改良培肥效果,试验采用单因素拉丁方设计,设置CK(不施土壤改良物料)、PM(磷石膏22.5 t·hm-2+腐熟羊粪15 t·hm-2]、CM(过磷酸钙300 kg·hm-2+腐熟羊粪15 t·hm-2)、PCM1(磷石膏22.5 t·hm-2+过磷酸钙300 kg·hm-2+腐熟羊粪15 t·hm-2)、PCM2(磷石膏30.0 t·hm-2+过磷酸钙600 kg·hm-2+腐熟羊粪30.0 t·hm-2)、PCM3(磷石膏30.0 t·hm-2+过磷酸钙900 kg·hm-2+腐熟羊粪30.0 t·hm-2)6个处理,研究了不同有机-无机改良物料配施对盐碱地土壤质量及湖南稷子产量的影响。结果表明,不同有机-无机物料配施均降低了土壤pH、全盐(TDS)、容重,提高了养分含量和>0.25 mm团聚体比例及稳定性,其中处理PCM2和PCM3效果较好;与CK相比,土壤pH、全盐和容重较对照分别降低了2.40%、27.33%、16.17%和1.83%、17.42%、12.94%,显著增加了0~40 cm土壤有机质(SOM)、碱解氮(AN)、有效磷(AP)和速效钾(AK)含量;平均重量直径(MWD)、几何平均直径(GMD)、>0.25 mm团聚体含量(R0.25)较对照分别提高了131.43%、164.07%、97.22%和78.58%、81.68%、57.41%,出苗率和产量较对照分别提高了62.84%、50.07%和68.24%、47.76%。土壤团聚体稳定性与孔隙度、有机质、碱解氮、有效磷和速效钾呈正相关关系,而与容重、pH、全盐量呈负相关关系。此外,PCM2和PCM3处理通过调理盐碱指标(pH, TDS)和肥力水平(AN、AP、AK和SOM)来提高土壤质量,而PCM2处理在这两个方面的作用效果要优于PCM3处理,因而获得了最高干草产量。综合各有机-无机物料配施对盐碱地的改良培肥效果,磷石膏(30.0 t·hm-2)+过磷酸钙(600 kg·hm-2)+腐熟羊粪(30.0 t·hm-2)处理较适合该区域。
The aim of this study was to investigate the abilities of organic-inorganic amendments to improve and fertilize saline-alkaline soils. An experiment was conducted using a one-way Latin square design with the following treatments: CK (no soil amendment materials), PM [phosphogypsum (22.5 t·ha-1)+well-decomposed goat manure (15 t·ha-1)], CM [calcium superphosphate (300 kg·ha-1)+well-decomposed goat manure (15 t·ha-1)], PCM1 [phosphogypsum (22.5 t·ha-1)+calcium superphosphate (300 kg·ha-1)+well-decomposed goat manure (15 t·ha-1)], PCM2 [phosphogypsum (30.0 t·ha-1)+calcium superphosphate (600 kg·ha-1)+well-decomposed goat manure (30.0 t·ha-1)], and PCM3 [phosphogypsum (30.0 t·ha-1)+calcium superphosphate (900 kg·ha-1)+well-decomposed goat manure (30.0 t·ha-1)]. These six treatments were designed to study the effects of varying ratios of organic-inorganic amendment materials on the soil quality and the yield of Echinochloa frumentacea grown in saline-alkaline soil. The results indicate that organic and inorganic materials at varying ratios decreased soil pH, total dissolved salt (TDS), and bulk density, and increased soil nutrient contents and the proportion and stability of aggregates larger than 0.25 mm. Among the treatments, PCM2 and PCM3 had better effective. The soil pH, total salt, and bulk density were decreased by 2.40%, 27.33%, and 16.17%, respectively, in the PCM2 treatment, and by 1.83%, 17.42%, and 12.94%, respectively, in the PCM3 treatment, compared with CK. The soil organic matter (SOM), alkaline nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents in the 0-40 cm soil layer were significantly increased in the PCM2 and PCM3 treatments compared with CK. The mean weight, diameter, geometric mean diameter, and aggregates content of particles larger than 0.25 mm were increased by 131.43%, 164.07%, and 97.22%, respectively, in PCM2, and by 78.58%, 81.68%, and 57.41%, respectively, in PCM3, compared with CK. Additionally, the seedling emergence rate and yield were improved by 62.84% and 50.07%, respectively, in PCM2,and by 68.24% and 47.76%, respectively, in PCM3,compared with CK. Soil aggregate stability was positively correlated with porosity, SOM, AN, AP, and AK, and negatively correlated with bulk density, pH, and total salts. In addition, the PCM2 and PCM3 treatments enhanced soil quality by improving salinity indicators (pH, TDS) and fertility levels (AN, AP, AK, and SOM). The PCM2 treatment was more effective than the PCM3 treatment in both respects, resulting in the highest hay yield. After evaluating the effects of various ratios of organic and inorganic materials on the enhancement and fertilization of saline-alkaline land, the treatment PCM2, comprising a combination of phosphogypsum (30.0 t·ha-1), calcium superphosphate (600 kg·ha-1), and decomposed goat manure (30.0 t·ha-1) was found to be the most suitable soil amendment for this region.
盐碱土 / 有机-无机改良物料 / 团聚体 / 土壤质量 / 作物产量
saline soils / organic-inorganic modified materials / aggregates / soil quality / crop yield
| [1] |
Yang J S. Development and prospect of the research on saline-affected soils in China. Acta Pedologica Sinica, 2008, 45(5): 837-845. |
| [2] |
杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45(5): 837-845. |
| [3] |
Zhang L, Yang J S, Yao R J, et al. The distribution and potential functions of prokaryotic communities in saline soils of Hetao irrigation district. Acta Pedologica Sinica, 2024, 61(2): 527-538. |
| [4] |
张璐, 杨劲松, 姚荣江, 河套灌区盐渍土壤原核生物群落特征及其潜在功能研究. 土壤学报, 2024, 61(2): 527-538. |
| [5] |
Zhao Y, Wang L, Zhao H L, et al. Research status and prospects of saline-alkali land amelioration in the coastal region of China. Chinese Agricultural Science Bulletin, 2022, 38(3): 67-74. |
| [6] |
赵英, 王丽, 赵惠丽, 滨海盐碱地改良研究现状及展望. 中国农学通报, 2022, 38(3): 67-74. |
| [7] |
Zhao Y, Wang S, Li Y, et al. Long-term performance of flue gas desulfurization gypsum in a large-scale application in a saline-alkali wasteland in northwest China. Agriculture, Ecosystems & Environment, 2018, 261: 115-124. |
| [8] |
Shen J L, Wang B, Xu X. Review on research of using desulfurized gypsum to ameliorate saline-sodic soil. Journal of Agricultural Sciences, 2016, 37(1): 65-69. |
| [9] |
沈婧丽, 王彬, 许兴. 脱硫石膏改良盐碱地研究进展. 农业科学研究, 2016, 37(1): 65-69. |
| [10] |
Lu X C, Zhang J S, Miao Q, et al. Improvement effects of different amelioration materials and their combinations on coastal saline-alkaline soils in the Yellow River Delta. Journal of Soil and Water Conservation, 2017, 31(6): 326-332. |
| [11] |
卢星辰, 张济世, 苗琪, 不同改良物料及其配施组合对黄河三角洲滨海盐碱土的改良效果. 水土保持学报, 2017, 31(6): 326-332. |
| [12] |
Yang J S, Yao R J, Wang X P, et al. Research on salt-affected soils in China: History, status quo and prospect. Acta Pedologica Sinica, 2022, 59(1): 10-27. |
| [13] |
杨劲松, 姚荣江, 王相平, 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27. |
| [14] |
Tian R R, Wang S J, Liu J, et al. Applying biochar and flue gas desulfurization gypsum in the root zone to improve saline-alkali soil quality and sunflower yield. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(5): 148-157. |
| [15] |
田荣荣, 王淑娟, 刘嘉, 根区施用生物炭和脱硫石膏提高盐碱土壤质量及向日葵产量. 农业工程学报, 2024, 40(5): 148-157. |
| [16] |
Xue Y S, Shi C H, Wang Y X, et al. Mixed application of superphosphate and organic fertilizers: Effect on photosynthetic characteristics and yield of wheat in saline soil. Chinese Agricultural Science Bulletin, 2021, 37(20): 1-6. |
| [17] |
薛远赛, 师长海, 王源溪, 过磷酸钙及有机肥混施对盐碱地小麦光合特性及产量的影响. 中国农学通报, 2021, 37(20): 1-6. |
| [18] |
Liu Y, Yang S Q, Zhang W F, et al. Effects of phosphogypsum and Suaeda salsa on the soil moisture, salt, and bacterial community structure of salinized soil. Environmental Science, 2023, 44(4): 2325-2337. |
| [19] |
刘月, 杨树青, 张万锋, 磷石膏和碱蓬对盐渍化土壤水盐及细菌群落结构的影响. 环境科学, 2023, 44(4): 2325-2337. |
| [20] |
Zhang J, Tian R R, Wang S J, et al. Effects of calcium-based amendments on saline-alkali soil improvement and sunflower yield. Soil and Fertilizer Sciences in China, 2022(11): 68-76. |
| [21] |
张菁, 田荣荣, 王淑娟, 钙基型土壤改良剂对盐碱土壤改良和向日葵产量的影响. 中国土壤与肥料, 2022(11): 68-76. |
| [22] |
Buss W, Graham M C, Shepherd J G, et al. Risks and benefits of marginal biomass-derived biochars for plant growth. Science of the Total Environment, 2016, 569/570: 496-506. |
| [23] |
Zhang Y, Cao J, Li G, et al. Metabolomics analysis of root exudates in Echinochloa frumentacea seeding stage under saline-alkali stress. Acta Ecologica Sinica, 2024, 44(8): 3540-3549. |
| [24] |
张杨, 曹靖, 李广, 盐碱胁迫下湖南稷子苗期根系分泌物代谢组学. 生态学报, 2024, 44(8): 3540-3549. |
| [25] |
Wan L S, Jiang W K, Liu S L, et al. A study on the high-yield property of billon dollar grass. Pratacultural Science, 1991(1): 13-18. |
| [26] |
万力生, 姜文奎, 刘升林, 海子1号湖南稷子高产性能的研究. 草业科学, 1991(1): 13-18. |
| [27] |
Lu A Q, Zhang F J, Xu X, et al. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings. Acta Prataculturae Sinica, 2021, 30(5): 84-93. |
| [28] |
陆安桥, 张峰举, 许兴, 盐胁迫对湖南稷子苗期生长及生理特性的影响. 草业学报, 2021, 30(5): 84-93. |
| [29] |
Zhang G L. Methods for laboratory analysis of soil investigation. Beijing: Science Press, 2012. |
| [30] |
张甘霖. 土壤调查实验室分析方法. 北京: 科学出版社, 2012. |
| [31] |
Chang F, Zhang H, Song J, et al. Once-middle amount of straw interlayer enhances saline soil quality and sunflower yield in semi-arid regions of China: Evidence from a four-year experiment. Journal of Environmental Management, 2023, 344: 118530. |
| [32] |
Kim Y J, Choo B K, Cho J Y. Effect of gypsum and rice straw compost application on improvements of soil quality during desalination of reclaimed coastal tideland soils: Ten years of long-term experiments. Catena, 2017, 156: 131-138. |
| [33] |
Yang W Y, Ji S F, Li D, et al. Effects of continuous application of commercial organic manure on farmland quality and vegetable yield. Journal of Agricultural Resources and Environment, 2014, 31(4): 319-322. |
| [34] |
杨文叶, 季淑枫, 李丹, 连续施用商品有机肥对耕地质量及蔬菜产量的影响. 农业资源与环境学报, 2014, 31(4): 319-322. |
| [35] |
Bal A R, Dutt S K. Mechanism of salt tolerance in wild rice (Oryza coarctata Roxb). Plant and Soil, 1986, 92(3): 399-404. |
| [36] |
Ji Z Y, Zhou J X, Zhang H, et al. Effects of soil conditioners on the soil chemical properties and organic carbon pools of saline-sodic soil. Journal of Agro-Environmental Sciences, 2019, 38(8): 1759-1767. |
| [37] |
冀拯宇, 周吉祥, 张贺, 不同土壤改良剂对盐碱土壤化学性质和有机碳库的影响. 农业环境科学学报, 2019, 38(8): 1759-1767. |
| [38] |
Mao W J, Li X P, An D, et al. Effects of different conditioners on soil structure of alkali soils in Ningxia Hui Autonomous Region. Bulletin of Soil and Water Conservation, 2010, 30(4): 190-192, 197. |
| [39] |
毛文娟, 李新平, 安东, 不同改良剂对宁夏地区盐碱土土壤结构的影响. 水土保持通报, 2010, 30(4): 190-192, 197. |
| [40] |
Chi C M, Zhao C W, Sun X J, et al. Reclamation of saline-sodic soil properties and improvement of rice (Oryza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, northeast China. Geoderma, 2012, 187/188: 24-30. |
| [41] |
Wang H, Zhang Z Q, Liu J H, et al. Improvement effects of different amendments on soda saline-alkali soil. Journal of Jilin Agricultural University, 2020, 42(5): 569-575. |
| [42] |
王涵, 张忠庆, 刘金华, 不同改良剂对苏打盐碱土的改良效果. 吉林农业大学学报, 2020, 42(5): 569-575. |
| [43] |
Yang J S, Yao R J, Wang X P, et al. Halt soil salinization, Boost soil productivity. Science, 2021, 73(6): 30-34. |
| [44] |
杨劲松, 姚荣江, 王相平, 防止土壤盐渍化, 提高土壤生产力. 科学, 2021, 73(6): 30-34. |
| [45] |
Qu C F, Yang J S, Yao R J, et al. Effect of different amendments on coastal saline-alkaline soils in the north Jiangsu. Journal of Irrigation and Drainage, 2012, 31(3): 21-25. |
| [46] |
曲长凤, 杨劲松, 姚荣江, 不同改良剂对苏北滩涂盐碱土壤改良效果研究. 灌溉排水学报, 2012, 31(3): 21-25. |
| [47] |
Bai X L, Zhang E, Wu J M, et al. Effects of different modified materials on soil fungal community structure in saline-alkali soil. Environmental Science, 2024, 45(6): 3562-3570. |
| [48] |
白小龙, 张恩, 武晋民, 不同改良物料对盐碱土壤真菌群落结构的影响. 环境科学, 2024, 45(6): 3562-3570. |
| [49] |
Zhang X D, Li B, Liu G M, et al. Effects of composite soil improvement agents on soil amendment and salt reduction in coastal saline soil. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1744-1754. |
| [50] |
张晓东, 李兵, 刘广明, 复合改良物料对滨海盐土的改土降盐效果与综合评价. 中国生态农业学报, 2019, 27(11): 1744-1754. |
| [51] |
Lu H Q, Tang W, Luo Z, et al. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton. Acta Agronomica Sinica, 2021, 47(12): 2511-2521. |
| [52] |
卢合全, 唐薇, 罗振, 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响. 作物学报, 2021, 47(12): 2511-2521. |
| [53] |
Zhang Y, Wang J, Feng Y. The effects of biochar addition on soil physicochemical properties: A review. Catena, 2021, 202: 105284. |
| [54] |
Zhang F J, Xu X, Xiao G J. Influence of flue gas desulphurization gypsum on characteristics of soil aggregates in sodic soil. Agricultural Research in the Arid Areas, 2013, 31(6): 108-114. |
| [55] |
张峰举, 许兴, 肖国举. 脱硫石膏对碱化土壤团聚体特征的影响. 干旱地区农业研究, 2013, 31(6): 108-114. |
| [56] |
Xu N, Tan G, Wang H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 2016, 74: 1-8. |
| [57] |
Rochester I J. Phosphorus and potassium nutrition of cotton: interaction with sodium. Crop and Pasture Science, 2010, 61(10): 825. |
| [58] |
Lashari M S, Ye Y, Ji H, et al. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. Journal of the Science of Food and Agriculture, 2015, 95(6): 1321-1327. |
| [59] |
Zhang P, Wei T, Jia Z, et al. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma, 2014, 230: 41-49. |
| [60] |
Wang X J, Jia Z K, Liang L Y, et al. Effects of organic manure application on dry land soil organic matter and water stable aggregates. Chinese Journal of Applied Ecology, 2012, 23(1): 159-165. |
| [61] |
王晓娟, 贾志宽, 梁连友, 旱地施有机肥对土壤有机质和水稳性团聚体的影响. 应用生态学报, 2012, 23(1): 159-165. |
| [62] |
Yao R, Gao Q, Liu Y, et al. Deep vertical rotary tillage mitigates salinization hazards and shifts microbial community structure in salt-affected anthropogenic-alluvial soil. Soil and Tillage Research, 2023, 227: 105627. |
| [63] |
Regelink I C, Stoof C R, Rousseva S, et al. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma, 2015, 247/248: 24-37. |
| [64] |
Jin M Y, Huang J, Hou P, et al. Improvement effect of three environmental materials and their composite application on saline-alkali soil. Journal of Agro-Environment Science, 2020, 39(1): 118-124. |
| [65] |
金梦野, 黄娟, 侯嫔, 三种环境材料及其复合施用对盐碱化土壤的改良效果研究. 农业环境科学学报, 2020, 39(1): 118-124. |
| [66] |
Wang D L, Zhuge Y P, Yang Q G, et al. Effects of three amendments on the soil properties of and maize growth in coastal saline-alkali soils. Journal of Agricultural Resources and Environment, 2021, 38(1): 20-27. |
| [67] |
王德领, 诸葛玉平, 杨全刚, 3种改良剂对滨海盐碱地土壤理化性状及玉米生长的影响. 农业资源与环境学报, 2021, 38(1): 20-27. |
| [68] |
Ullah S, Dahlawi S, Naeem A, et al. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 2018, 625: 320-335. |
| [69] |
Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 2009, 12(5): 452-461. |
| [70] |
De Gryze S, Six J, Brits C, et al. A quantification of short-term macroaggregate dynamics: influences of wheat residue input and texture. Soil Biology and Biochemistry, 2005, 37(1): 55-66. |
| [71] |
Nichols K A, Halvorson J J. Roles of biology, chemistry, and physics in soil macroaggregate formation and stabilization. The Open Agriculture Journal, 2013, 7(1): 107-117. |
| [72] |
Yan Z, Zhou J, Liu C, et al. Legume-based crop diversification reinforces soil health and carbon storage driven by microbial biomass and aggregates. Soil and Tillage Research, 2023, 234: 105848. |
| [73] |
Zhang P P, Gao L C, Li X M, et al. Phosphogypsum and organic fertilizer: effects on yield and leaf physiological characteristics of broomcorn millet in saline-alkali soil. Chinese Agricultural Science Bulletin, 2018, 34(15): 26-32. |
| [74] |
张盼盼, 高立城, 李晓敏, 磷石膏和有机肥对盐碱地糜子产量和叶片生理特性的影响. 中国农学通报, 2018, 34(15): 26-32. |
| [75] |
Wang J M, Yang P L, Shi Y, et al. Effects on physical and chemical properties of soil and sunflower growth when sodic soils reclaimed with by-product from flue gas desulphurization. Journal of Soil and Water Conservation, 2005, 19(3): 34-37. |
| [76] |
王金满, 杨培岭, 石懿, 脱硫副产物对改良碱化土壤的理化性质与作物生长的影响. 水土保持学报, 2005, 19(3): 34-37. |
国家重点研发计划(2021YFD1900600)
/
| 〈 |
|
〉 |