棘孢木霉bai5对紫花苜蓿根腐病病原菌的抑菌效果及其促生作用研究
杜化迎 , 张玉洲 , 赵楠 , 虎妍 , 王一冬 , 刘腾达 , 顾沛雯 , 于泽洋
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 179 -190.
棘孢木霉bai5对紫花苜蓿根腐病病原菌的抑菌效果及其促生作用研究
Trichoderma asperellum bai5 inhibits root rot pathogens of alfalfa (Medicago sativa) and promotes alfalfa plant growth
为挖掘对紫花苜蓿根腐病致病菌具有抑制作用的有益菌株,本研究采用稀释分离法从白桦根围土壤中分离、获得1株真菌bai5,通过形态学和分子生物学鉴定,确定为棘孢木霉。以紫花苜蓿常见的7种根腐病病原菌(燕麦镰刀菌FAV-7、木贼镰刀菌FEQ-10、锐顶镰刀菌FAC-11、厚垣镰刀菌FCH-13、三线镰刀菌FTR-14、尖孢镰刀菌FOX-15、茄病镰刀菌FSO-16)为靶标菌,利用两点对峙法、固体稀释法、平板对扣法综合评估bai5菌株对病原菌的抑制作用,结果表明,在对峙培养下,bai5对7种病原菌的抑制率均大于69%;在发酵滤液抑菌试验中,bai5对FAC-11、FTR-14、FEQ-10、FCH-13、FAV-7和FSO-16的抑制率分别为63.14%、49.80%、40.78%、33.33%、16.08%、8.20%,而对FOX-15无抑制效果;棘孢木霉bai5的挥发性物质对FTR-14和FAC-11的抑制率分别高达74.51%、72.00%。通过对bai5菌株的生物学特性和促生特性分析,结果表明,棘孢木霉bai5生长速度快,不仅有较强的抗逆能力,还具有固氮和产纤维素酶能力。通过盆栽试验,测定棘孢木霉bai5对紫花苜蓿生长和生理指标的影响,结果表明,bai5能够显著提高紫花苜蓿的鲜重、地上部长、干重、叶绿素含量和可溶性糖含量。综上,棘孢木霉bai5是具有较高开发价值的生防真菌,可以抑制7种苜蓿根腐病菌生长并显著促进苜蓿生长。
The aim of this work was to screen for fungal biocontrol strains with inhibitory effects on the pathogens causing root rot of alfalfa (Medicago sativa). To this end, the fungal strain bai5 was isolated and obtained from the soil surrounding the roots of Betula platyphylla by the dilution isolation method. This strain was identified as Trichoderma asperellum through morphological and molecular biological identification methods. Seven common root rot pathogens of alfalfa (Fusarium avenaceum FAV-7, Fusarium equiseti FEQ-10, Fusarium acuminatum FAC-11, Fusarium chlamydosporum FCH-13, Fusarium tricinctum FTR-14, Fusarium oxysporum FOX-15, Fusarium solani FSO-16) were used as target pathogens, and the inhibitory effect of strain bai5 on these pathogens was comprehensively evaluated using the two-point standoff method, the solid dilution method, and the plate-pair buckling method. The inhibitory rate of strain bai5 against the seven fungal pathogens was higher than 69% in the standoff culture test. In the fermentation filtrate inhibition test, strain bai5 inhibited the growth of FAC-11, FTR-14, FEQ-10, FCH-13, FAV-7, and FSO-16 by 63.14%, 49.80%, 40.78%, 33.33%, 16.08%, and 8.20%, respectively, but it had no inhibitory effect on FOX-15. The volatile compounds of strain bai5 inhibited the growth of FTR-14 and FAC-11 by up to 74.51% and 72.00%, respectively. Analyses of the biological properties and growth-promoting characteristics of strain bai5 showed that it grows fast, is strongly stress resistant, and has nitrogen-fixation and cellulase-producing abilities. The effect of T. asperellum bai5 on the growth and physiological indexes of pot-grown alfalfa plants was determined. The results show that bai5 significantly increased the fresh weight, height of above-ground parts, dry weight, chlorophyll content, and soluble sugars content of alfalfa plants. In conclusion, T. asperellum bai5 can inhibit the growth of at least seven root rot fungi of alfalfa and significantly promote alfalfa plant growth. Therefore, it is a biocontrol fungus with high development potential.
棘孢木霉 / 分离鉴定 / 苜蓿根腐病 / 镰刀菌 / 抑菌效果 / 促生
Trichoderma asperellum / separation and identification / alfalfa root rot disease / Fusarium / antibacterial effect / promote growth
| [1] |
Zhou Q, Luo D, Chai X T, et al. Multiple regulatory networks are activated during cold stress in Medicago sativa L. International Journal of Molecular Sciences, 2018, 19(10): 3169. |
| [2] |
Zhou Q, Chen T L, Wang Y R, et al. The development of 204 novel EST-SSRs and their use for genetic diversity analyses in cultivated alfalfa. Biochemical Systematics and Ecology, 2014, 57: 227-230. |
| [3] |
Yuan Q H. Advances in alfalfa diseases in China. Plant Protection, 2007, 33(1): 6-10. |
| [4] |
袁庆华. 我国苜蓿病害研究进展. 植物保护, 2007, 33(1): 6-10. |
| [5] |
Berg L E, Miller S S, Dornbusch M R, et al. Seed rot and damping-off of alfalfa in Minnesota caused by Pythium and Fusarium species. Plant Disease, 2017, 101(11): 1860-1867. |
| [6] |
Leroch M, Kretschmer M, Hahn M. Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in south west Germany. Journal of Phytopathology, 2011, 159(1): 63-65. |
| [7] |
Hawkins N J, Chris B, Andrea D, et al. The evolutionary origins of pesticide resistance. Biological Reviews of the Cambridge Philosophical Society, 2018, 94(1): 135-155. |
| [8] |
Yang J F. Isolation and identification of the pathogens causing root rot disease in alfalfa and the evaluation of alfalfa resistant varieties resistance to Fusarium spp. Hohhot: Inner Mongolia Agricultural University, 2021. |
| [9] |
杨剑锋. 苜蓿根腐病病原菌分离鉴定及不同苜蓿品种对镰刀型根腐病抗性评价. 呼和浩特: 内蒙古农业大学, 2021. |
| [10] |
Volpiano C G, Lisboa B B, Granada C E, et al. Rhizobia for biological control of plant diseases//Microbiome in plant health and disease. Singapore: Springer, 2019: 315-336. |
| [11] |
Chaverri P, Castlebury L A, Overton Barrie E, et al. Hypocrea/Trichoderma: species with conidiophore elongations and green conidia. Mycologia, 2003, 95(6): 1100-1140. |
| [12] |
Meng S L, Tian Y M, Gu X, et al. Research progress on synergistic disease prevention by Trichoderma. Chinese Journal of Biological Control, 2022, 38(3): 739-747. |
| [13] |
孟素玲, 田彦梅, 顾欣, 木霉的协同防病作用研究进展. 中国生物防治学报, 2022, 38(3): 739-747. |
| [14] |
Cui X L, Li S G, Yang J, et al. Screening and identification of saline-alkali tolerant and tobacco black shank resistant Trichoderma. Journal of Agricultural Science and Technology, 2014, 16(3): 81-89. |
| [15] |
崔西苓, 李世贵, 杨佳, 耐盐碱抗烟草黑胫病木霉菌株的筛选与鉴定. 中国农业科技导报, 2014, 16(3): 81-89. |
| [16] |
Ganuza M, Pastor N, Boccolini M, et al. Evaluating the impact of the biocontrol agent Trichoderma harzianum ITEM 3636 on indigenous microbial communities from field soils. Journal of Applied Microbiology, 2019, 126(2): 608-623. |
| [17] |
Zhang X M, Tian Y Q, Pan X M, et al. Antifungal effect and plant growth promoting mechanism of two Trichoderma strains. Journal of Southern Agriculture, 2020, 51(11): 2713-2721. |
| [18] |
张晓梦, 田永强, 潘晓梅, 2株木霉抑菌效果及其促植物生长机制. 南方农业学报, 2020, 51(11): 2713-2721. |
| [19] |
Dong C X, Cui Y, Niu Q C, et al. The characteristics and biocontrol of Trichoderma asperellum against two turfgrass pathogens. Acta Agrestia Sinica, 2022, 30(5): 1102-1109. |
| [20] |
董纯辛, 崔艺, 牛启尘, 棘孢木霉特性及其对两种草坪病原菌的生防作用. 草地学报, 2022, 30(5): 1102-1109. |
| [21] |
Liu P, Yang R, Wang Z, et al. Biocontrol potential of Trichoderma asperellum CMT10 against strawberry root rot disease. Horticulturae, 2024, 10(3): 2-16. |
| [22] |
Wang L, Jia R F, Wang N, et al. Identification of pathogen of alfalfa root rot in Inner Mongolia. Chinese Journal of Grassland, 2024, 46(6): 103-116. |
| [23] |
王乐, 贾瑞芳, 王娜, 内蒙古自治区紫花苜蓿根腐病病原菌鉴定. 中国草地学报, 2024, 46(6): 103-116. |
| [24] |
Ouyang J H, Li W, Zhang X H, et al. Research progress on control of alfalfa root rot by plant growth promoting rhizobacteria. Journal of Grassland and Forage Science, 2023(3): 1-5. |
| [25] |
欧阳佳慧, 李旺, 张小华, 牧草根际促生菌防治紫花苜蓿根腐病研究进展. 草学, 2023(3): 1-5. |
| [26] |
Xie J L, Li B, Liu J, et al. Isolation, identification, and evaluation of the saline-tolerant strain of Trichoderma spp. in the Halogeton arachnoideus rhizosphere. Pratacultural Science, 2021, 38(10): 1930-1937. |
| [27] |
谢佳丽, 李宝, 刘佳, 盐生草根际耐盐性木霉菌分离鉴定及其耐盐性评价. 草业科学, 2021, 38(10): 1930-1937. |
| [28] |
Ran L, Jiao Y, Ling J, et al. Biocontrol efficacy of Trichoderma arundinaceum strain 3199 against Fusarium oxysporum f. sp. cucumerinum. Acta Phytopathologica Sinica, 2024, 54(2): 429-435. |
| [29] |
冉林, 焦阳, 凌键, 苇状木霉3199菌株对黄瓜枯萎病的生物防治研究. 植物病理学报, 2024, 54(2): 429-435. |
| [30] |
Zhang Y M, Wang D, Wang Y, et al. Trichoderma asperellum PT-29 metabolites inhibit Fusarium toxin production. Jiangsu Agricultural Sciences, 2023, 51(21): 126-132. |
| [31] |
张轶敏, 王东, 王煜, 棘孢木霉PT-29代谢产物抑制镰刀菌毒素的产生. 江苏农业科学, 2023, 51(21): 126-132. |
| [32] |
Zhang S H. Isolation and identification of Trichoderma spp. and evaluation of biocontrol potential of Trichoderma hamatum on pear diseases. Wuhan: Huazhong Agricultural University, 2023. |
| [33] |
张诗涵. 木霉的分离鉴定及钩状木霉对梨病害生防潜能的评价. 武汉: 华中农业大学, 2023. |
| [34] |
Li Y T, Ma Y K, Yang S J, et al. Screening of antagonistic Trichoderma strains against Colletotrichum gloeosporioides in pepper. Mycosystema, 2023, 42(12): 2374-2387. |
| [35] |
李叶彤, 马玉坤, 杨仕佳, 抗辣椒炭疽病菌盘长孢状刺盘孢的木霉菌的筛选. 菌物学报, 2023, 42(12): 2374-2387. |
| [36] |
Yu Z Y. Acquisition and production of Trichoderma asperellum-T46 and the analysis of its resistance induce mechanism on Populus davidiana × P. alba var. pyramidalis. Harbin: Northeast Forestry University, 2021. |
| [37] |
于泽洋. 棘孢木霉T46的筛选、生产及诱导山新杨抗性机理研究. 哈尔滨: 东北林业大学, 2021. |
| [38] |
Zheng Q H, Li F X, Liu G Y, et al. Screening of growth promoting endophytic fungi in abandoned fankou lead-zinc mine. Journal of Hunan University of Technology, 2022, 36(6): 55-61. |
| [39] |
郑秋桦, 李富鑫, 刘广源, 凡口铅锌矿废弃地植物促生长内生真菌的筛选. 湖南工业大学学报, 2022, 36(6): 55-61. |
| [40] |
Yang M G, Lu J J, Tian Y J, et al. Screening and identification of endophytic fungi from Quercus spinosa and determination of their growth-promoting functions. Shandong Agricultural Sciences, 2024, 56(4): 133-144. |
| [41] |
杨明国, 芦俊佳, 田芸菁, 刺叶高山栎(Quercus spinosa)内生真菌筛选鉴定及促生作用测定. 山东农业科学, 2024, 56(4): 133-144. |
| [42] |
Gong W F, Sun Y, Wang R Q, et al. Isolation of endophytes from rapeseeds in Tibet and screening of antagonistic bacteria with multiple plant growth promoting traits. Journal of Plant Protection, 2022, 49(4): 1053-1062. |
| [43] |
巩文峰, 孙玉, 王瑞琪, 西藏油菜种子内生菌分离及具有多种促生特性的拮抗菌筛选. 植物保护学报, 2022, 49(4): 1053-1062. |
| [44] |
Huang D Y, Yu Z B, Wan Z Y, et al. Study on control effect of Streptomyces phaeoluteichromatogenes HEBRC45958 strain on Corynespora leaf spot of tomato. Journal of Agricultural Science and Technology, 2024, 26(11): 136-142. |
| [45] |
黄大野, 余志斌, 万中义, 产褐黄色链霉菌HEBRC45958菌株防控番茄棒孢叶斑病研究. 中国农业科技导报, 2024, 26(11): 136-142. |
| [46] |
Xue D X, Li M, Gao X X, et al. Isolation, identification and biological characteristics of Trichoderma asperellum GT30. Shandong Agricultural Sciences, 2023, 55(10): 118-123. |
| [47] |
薛德星, 李美, 高兴祥, 生防菌棘孢木霉的分离鉴定及生物学特性研究. 山东农业科学, 2023, 55(10): 118-123. |
| [48] |
Li J X, Cai C L, Wang Y, et al. Identification of Trichoderma asperellum and its biocontrol mechanisms against peanut southern blight. Chinese Journal of Biological Control, 2022, 38(6): 1534-1544. |
| [49] |
李佳昕, 蔡晨亮, 王琰, 棘孢木霉菌鉴定及其对花生白绢病生防机制的研究. 中国生物防治学报, 2022, 38(6): 1534-1544. |
| [50] |
Ma Y K, Li Y T, Yang S J, et al. Biocontrol potential of Trichoderma asperellum strain 576 against Exserohilum turcicum in Zea mays. Journal of Fungi, 2023, 9(9): 2-22. |
| [51] |
Amin F, Razdan V K, Mohiddin F A, et al. Effect of volatile metabolites of Trichoderma species against seven fungal plant pathogens in-vitro. Journal of Phytology, 2010, 2(10): 34-37. |
| [52] |
Tao L Y, Zhang Y W, Li Y Q, et al. Antagonistic activity of volatile metabolites from Trichoderma asperellum. Chinese Journal of Biotechnology, 2020, 36(6): 1181-1189. |
| [53] |
陶玲芸, 张怡雯, 李雅乾, 棘孢木霉挥发性次级代谢产物检测及抑菌活性分析. 生物工程学报, 2020, 36(6): 1181-1189. |
| [54] |
Zheng C Q, Linghu M L, Shu Z Z, et al. Isolation, identification of Trichoderma hamatum and determination of its antibacterial activity on Colletotrichum capsici and Ustilago coicis. Journal of Southern Agriculture,2023, 54(7): 2050-2059. |
| [55] |
郑传奇, 令狐美林, 舒忠泽, 钩状木霉的分离鉴定及对辣椒炭疽菌和薏苡黑粉菌的抑菌活性. 南方农业学报, 2023, 54(7): 2050-2059. |
| [56] |
Qi W, Zhao L. Study of the siderophore-producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology, 2013, 53(4): 355-364. |
| [57] |
Li Y T, Hwang S G, Huang Y M, et al. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato.Crop Protection, 2018, 110: 275-282. |
| [58] |
Yao C X, Li X J, Liu C, et al. Screening and identification of three strains of Trichoderma spp. antagonizing Fusarium oxysporum and evaluation of their effects on promoting growth and disease control. Acta Tabacaria Sinica, 2022, 28(4): 96-105. |
| [59] |
姚晨虓, 李小杰, 刘畅, 3株拮抗烟草尖孢镰刀菌的木霉菌筛选鉴定及促生防病效果评价. 中国烟草学报, 2022, 28(4): 96-105. |
宁夏重点研发计划项目(2023BCF01026-04)
高等学校科学研究项目(NYG-2024-029)
/
| 〈 |
|
〉 |