准噶尔荒漠梭梭和柽柳根际土壤微生物功能基因丰度变化特征
马红钰 , 周小国 , 王宝 , 宋渝川 , 艾克热木·阿不拉提江null , 蒋邵丽 , 闵九洲 , 赵红梅 , 程军回
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 109 -122.
准噶尔荒漠梭梭和柽柳根际土壤微生物功能基因丰度变化特征
Differences in soil microbial functional gene abundance between rhizosphere soils of Haloxylon ammodendron and Tamarix chinensis in the Junggar Desert
大量研究表明,陆地生态系统中养分循环显著受到土壤微生物功能基因丰度(soil microbial functional gene abundance, SMFGA)变化的影响。目前,有关荒漠生态系统灌木根际土壤中SMFGA的变化特征仍所知甚少。基于此,本研究以准噶尔荒漠两种共存的优势灌木梭梭和柽柳为目标植物,在采集二者根际和株间空地表层土壤(0~10 cm)的基础上,通过宏基因组测序分析了与土壤碳、氮、磷循环相关的67个SMFGA,旨在揭示根际土壤中SMFGA变化特征及其与土壤理化性质(土壤容重、pH、有机质、全氮、全磷、全钾、铵态氮、硝态氮、速效磷和速效钾)和土壤微生物多样性之间的内在联系。研究结果显示:1)与株间空地相比,梭梭和柽柳根际土壤具有较高的速效态养分(铵态氮、硝态氮和速效磷)含量。2)梭梭和柽柳根际土壤中,细菌Shannon-Wiener指数均高于株间空地。真菌Shannon-Wiener指数仅在梭梭根际和株间空地土壤中存在显著差异。3)参与碳、氮、磷循环的15、17和35个功能基因中,分别有6(pulA、nplT、chitinase、nagA、bglB和bglX)、2(nrfH和napB)和8个(gcd、phnG、phnH、phnI、phnL、phnA、phnJ和phnM)功能基因,其相对丰度在梭梭和柽柳根际土壤中显著高于株间空地。4)根际土壤中参与氮、磷循环的SMFGA,与速效钾和pH呈显著正相关关系,而参与碳循环的SMFGA与理化性质和微生物多样性均无显著关系。综合而言,荒漠生态系统中灌木根际效应改变了SMFGA变化特征及其与土壤理化性质和微生物多样性之间的关系。
Many studies have demonstrated that in terrestrial ecosystems, nutrient cycling is tightly linked with soil microbial functional gene abundance (SMFGA). However, our understanding of the variations in SMFGA in rhizosphere soils among shrubs in desert ecosystems is still limited. In this study, we conducted a comparative analysis of SMFGA in the rhizosphere of two dominant coexisting shrubs in the Junggar Desert, Haloxylon ammodendron and Tamarix chinensis. Bulk soil and rhizosphere soil samples were collected from the surface layer (0-10 cm) around H. ammodendron and T. chinensis. In total, 67 microbial functional genes involved in soil carbon-, nitrogen-, and phosphorus-cycling were detected via metagenomic sequencing. We then explored the linkages among SMFGA, soil physical and chemical properties (soil bulk density, pH, soil organic matter, total nitrogen, total phosphorus, total potassium, ammonium nitrogen, nitrate nitrogen, available phosphorus and available potassium), and microbial diversity in the rhizosphere soils. The results show that: 1) Compared with bulk soils, rhizosphere soils of H. ammodendron and T. chinensis had relatively higher contents of available nutrients (ammonium nitrogen, nitrate nitrogen, and available phosphorus). 2) The Shannon-Wiener index of bacterial diversity was significantly higher in rhizosphere soils of H. ammodendron and T. chinensis than in the bulk soils, but the fungal Shannon-Wiener index was only significantly higher in the rhizosphere soil of H. ammodendron. 3) Six of the 15 microbial genes related to carbon cycling (pulA, nplT, chitinase, nagA, bglB, and bglX), two of the 17 microbial genes related to nitrogen cycling (nrfH and napB), and eight of the 35 microbial genes related to phosphorus cycling (gcd, phnG, phnH, phnI, phnL, phnA, phnJ, and phnM) had higher relative abundance in the rhizosphere soils of H. ammodendron and T. chinensis than in the bulk soils. 4) The abundance of microbial genes involved in nitrogen- and phosphorus-cycling in the rhizosphere soils was positively related to available potassium and soil pH, but no significant associations were detected between microbial genes involved in carbon-cycling and soil physical properties, soil chemical properties, or microbial diversity. In summary, shrubs’ rhizospheres affect the abundance of microbial functional genes, which are linked with soil physical and chemical properties and microbial diversity in this desert ecosystem.
土壤微生物功能基因丰度 / 根际土壤 / 灌木 / 荒漠生态系统
soil microbial functional gene abundance / rhizosphere soil / shrubs / desert ecosystem
| [1] |
Long Y C, Ma W W, Song L C, et al. The key microbial functional gene of soil nitrogen transformation in different degradation stages of Gahai wetland. Chinese Journal of Ecology, 2022, 41(10): 1923-1931. |
| [2] |
龙永春, 马维伟, 宋良翠, 尕海湿地不同退化阶段土壤氮转化的关键微生物功能基因. 生态学杂志, 2022, 41(10): 1923-1931. |
| [3] |
Wang Q, Liu H W, Jia S X, et al. Effect of conservation tillage on microbial functional genes related to carbon cycle of black soil. Acta Ecologica Sinica, 2023, 43(11): 4760-4771. |
| [4] |
王倩, 刘红文, 贾淑霞, 保护性耕作对东北黑土微生物碳循环功能基因的影响. 生态学报, 2023, 43(11): 4760-4771. |
| [5] |
Zhang Q F, Zhou J C, Li X J, et al. Contrasting effects of warming and N deposition on soil microbial functional genes in a subtropical forest. Geoderma, 2022, 408(4): 115588. |
| [6] |
Zhao K, Kong W D, Wang F, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biology and Biochemistry, 2018, 127(12): 230-238. |
| [7] |
Zhao Y P, Zhao Y Q, Zhang S H, et al. N-cycle gene abundance determination of N mineralization rate following re-afforestation in the Loess Plateau of China. Soil Ecology Letters, 2024, 6(1): 230188. |
| [8] |
Liu S W, Zeng J X, Yu H, et al. Antimony efflux underpins phosphorus cycling and resistance of phosphate-solubilizing bacteria in mining soils. The ISME Journal, 2023, 17(8): 1278-1289. |
| [9] |
Wang X W, Guo H, Wang J N, et al. Microbial phosphorus-cycling genes in soil under global change. Global Change Biology, 2024, 30(4): e17281. |
| [10] |
Wang C, Yu Q Y, Ji N N, et al. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient. Nature Communications, 2023, 14(1): 7437. |
| [11] |
Hu M J, Sardans J, Sun D Y, et al. Microbial diversity and keystone species drive soil nutrient cycling and multifunctionality following mangrove restoration. Environmental Research, 2024, 251(2): 118715. |
| [12] |
Liu S, Yao J N, Zhang J J, et al. Functional gene abundance and community diversity of ammonia-oxidizing and denitrifying microorganisms in the rhizosphere soil of desert leguminous shrubs. Acta Prataculturae Sinica, 2024, 33(5): 115-127. |
| [13] |
刘爽, 姚佳妮, 张钧杰, 荒漠豆科灌丛根际土壤氨氧化和反硝化微生物功能基因丰度及群落多样性特征. 草业学报, 2024, 33(5): 115-127. |
| [14] |
Zhi R C, Deng J, Xu Y L, et al. Altered microbial P cycling genes drive P availability in soil after afforestation. Journal of Environmental Management, 2023, 328(4): 116998. |
| [15] |
Trivedi P, Delgado-Baquerizo M, Trivedi C, et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. The ISME Journal, 2016, 10(11): 2593-2604. |
| [16] |
Ling N, Wang T T, Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nature Communications, 2022, 13(1): 836. |
| [17] |
Liu X D, Chen L, Yang X G, et al. “Fertile island” effect of soil nutrients occurring in Caragana korshinskii and Artemisia ordosica shrubs in desert steppe. Journal of Northwest Forestry University, 2016, 31(4): 26-32. |
| [18] |
刘学东, 陈林, 杨新国, 荒漠草原2种柠条(Caragana korshinskii)和油蒿(Artemisia ordosica)灌丛土壤养分“肥岛”效应.西北林学院学报, 2016, 31(4): 26-32. |
| [19] |
Sun M M, Tian L, Qiao Z W, et al. Physicochemical properties and fungal community characteristics of rhizosphere and non-rhizosphere soils of Hippophae rhamnoides in Pisha sandstone area of Inner Mongolia. Acta Microbiologica Sinica, 2024, 64(6): 1747-1765. |
| [20] |
孙美美, 田丽, 乔紫薇, 内蒙古砒砂岩地区沙棘根际和非根际土壤理化性质及真菌群落特征. 微生物学报, 2024, 64(6): 1747-1765. |
| [21] |
Wu D Y, Jiang L M, Li W J, et al. Drivers of rhizosphere microbial differences in desert genus Haloxylon. Land Degradation & Development, 2023, 34(12): 3513-3524. |
| [22] |
Liu H X, Sun Z J, Dong Y Q, et al. Precipitation drives the accumulation of soil organic carbon in the sandy desert of the Junggar Basin, Northwest China. Ecological Indicators, 2022, 142(9): 109224. |
| [23] |
Zhou H F, Li Y, Tang Y, et al. The characteristics of the snow-cover and snowmelt water storage in Gurbantunggut Desert. Arid Zone Research, 2009, 26(3): 312-317. |
| [24] |
周宏飞, 李彦, 汤英, 古尔班通古特沙漠的积雪及雪融水储存特征. 干旱区研究, 2009, 26(3): 312-317. |
| [25] |
Zhang S H, Tao Y, Chen Y S, et al. Spatial pattern of soil multifunctionality and its correlation with environmental and vegetation factors in the Junggar Desert, China. Biodiversity Science, 2022, 30(8): 140-150. |
| [26] |
张世航, 陶冶, 陈玉森, 准噶尔荒漠土壤多功能性的空间变异特征及其驱动因素. 生物多样性, 2022, 30(8): 140-150. |
| [27] |
Ji F, Fan Z L, Zhao G H. Comparative analysis of soil physicochemical characteristics of aeolian sandy soil in two deserts in Xinjiang. Arid Zone Research, 1995, 12(1): 19-25. |
| [28] |
季方, 樊自立, 赵贵海. 新疆两大沙漠风沙土土壤理化特性对比分析. 干旱区研究, 1995, 12(1): 19-25. |
| [29] |
Qian Y B, Zhang L Y, Wu Z N, et al. Characteristics of eco-environment in the margin regions of the Junggar Basin, Xinjiang. Arid Land Geography, 2003, 26(1): 30-36. |
| [30] |
钱亦兵, 张立运, 吴兆宁, 新疆准噶尔盆地边缘部分地段生态环境特征. 干旱区地理, 2003, 26(1): 30-36. |
| [31] |
Liu Z Q, Liu T, Zhang R, et al. Species diversity and spatial differentiation of ephemeral plant community in southern Gurbantunggut Desert. Chinese Journal of Ecology, 2011, 30(1): 45-52. |
| [32] |
刘忠权, 刘彤, 张荣, 古尔班通古特沙漠南部短命植物群落物种多样性及空间分异. 生态学杂志, 2011, 30(1): 45-52. |
| [33] |
Pan S Y, Song Y C, Yuan R Y, et al. Variations in soil inorganic nitrogen content under canopies of two shrubs in the Junggar Desert. Acta Prataculturae Sinica, 2024, 33(5): 183-195. |
| [34] |
潘斯瑶, 宋渝川, 袁如薏, 准噶尔荒漠两种灌木冠下土壤无机氮含量变化特征. 草业学报, 2024, 33(5): 183-195. |
| [35] |
Liu Y H, Sheng J D, Wu H Q, et al. Study on variation features of soil particles in “fertile islands” of three desert vegetations in arid region. Soils, 2011, 43(6): 975-980. |
| [36] |
刘耘华, 盛建东, 武红旗, 干旱区三种荒漠植被“肥岛”土壤颗粒变异特征研究. 土壤, 2011, 43(6): 975-980. |
| [37] |
Chen X M, He B, Ding C, et al. Diversity and functional distribution characteristics of myxobacterial communities in the rhizosphere of Tamarix chinensis Lour in Ebinur Lake Wetland, China. Microorganisms, 2023, 11(8): 1924. |
| [38] |
Liu L X, Ma L Y, Zhu M M, et al. Rhizosphere microbial community assembly and association networks strongly differ based on vegetation type at a local environment scale. Frontiers in Microbiology, 2023, 14(1): 1129471. |
| [39] |
Cao Y F, Li Y, Li C H, et al. The spatial distribution of soil microbes around a desert shrub of Haloxylon ammodendron. Acta Ecologica Sinica, 2016, 36(6): 1628-1635. |
| [40] |
曹艳峰, 李彦, 李晨华, 荒漠灌木梭梭(Haloxylon ammodendron)周围土壤微生物的空间分布. 生态学报, 2016, 36(6): 1628-1635. |
| [41] |
Bao S D. Soil and agricultural chemistry analysis (the third edition). Beijing: China Agricultural Press, 2000. |
| [42] |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. |
| [43] |
Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23): 3150-3152. |
| [44] |
Kanehisa M, Goto S, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 2016, 44(1): 457-462. |
| [45] |
He Z L, Deng Y, Van Nostrand J D, et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. The ISME Journal, 2010, 4(9): 1167-1179. |
| [46] |
Qin J Q, Xiao Z R, Ming A G, et al. Effect of monoculture and mixed plantation with coniferous and broadleaved tree species on soil microbial carbon cycle functional gene abundance. Ecology and Environmental Sciences, 2023, 32(10): 1719-1731. |
| [47] |
秦佳琪, 肖指柔, 明安刚, 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响. 生态环境学报, 2023, 32(10): 1719-1731. |
| [48] |
Zhao M Y, Shen H H, Zhu Y K, et al. Asymmetric responses of abundance and diversity of N-cycling genes to altered precipitation in arid grasslands. Functional Ecology, 2023, 37(11): 2953-2966. |
| [49] |
Zhang B Y, Yu K. Application of microbial gene databases in the annotation of nitrogen cycle functional genes. Microbiology China, 2020, 47(9): 3021-3038. |
| [50] |
张博雅, 余珂. 微生物基因数据库在氮循环功能基因注释中的应用. 微生物学通报, 2020, 47(9): 3021-3038. |
| [51] |
Liu J, Cade-Menun B J, Yang J J, et al. Long-term land use affects phosphorus speciation and the composition of phosphorus cycling genes in agricultural soils. Frontiers in Microbiology, 2018, 9(1): 1643. |
| [52] |
Tang Z X, Gao J S, Song A L, et al. Impact of green manure on microbial phosphorus cycling genes in rice rhizosphere as investigated by metagenomics. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1578-1590. |
| [53] |
唐治喜, 高菊生, 宋阿琳, 用宏基因组学方法研究绿肥对水稻根际微生物磷循环功能基因的影响. 植物营养与肥料学报, 2020, 26(9): 1578-1590. |
| [54] |
Lin Q, Xiao Z R, Ming A G, et al. Soil phosphorus cycling microbial functional genes of monoculture and mixed plantations of native tree species in subtropical China. Frontiers in Microbiology, 2024, 15(1): 1419645. |
| [55] |
De Mendiburu F. Agricolae: statistical procedures for agricultural research. R package version 1.3-7. (2023-11-12)[2024-06-01]. https://CRAN.R-project.org/package=agricolae. |
| [56] |
Oksanen J, Simpson G L, Blanchet F G, et al. Vegan: Community ecology package. R package version 2.6-8. (2022-10-11)[2024-06-17]. https://CRAN.R-project.org/package=vegan. |
| [57] |
Huang H Y. linkET: Everything is linkable. R package version 0.0.7.4. (2023-06-30)[2024-06-25]. https://github.com/Hy4m/linkET. |
| [58] |
Liu S B, He F K, Kuzyakov Y, et al. Nutrients in the rhizosphere: A meta-analysis of content, availability, and influencing factors. Science of the Total Environment, 2022, 826(25): 153908. |
| [59] |
Deng L, Peng C H, Kim D G, et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 2021, 214(3): 103501. |
| [60] |
Yang R H, Zhao C Y, Wang X J, et al. Phylogenetic diversity preliminary analysis of Haloxylon ammodendron and Tamarix ramosissima soil bacteria. Soils, 2016, 48(6): 1120-1130. |
| [61] |
杨瑞红, 赵成义, 王新军, 梭梭和柽柳土壤微生物多样性初步分析. 土壤, 2016, 48(6): 1120-1130. |
| [62] |
Martens R. Contribution of rhizodeposits to the maintenance and growth of soil microbial biomass. Soil Biology and Biochemistry, 1990(1):141-147. |
| [63] |
Chen H, Tang H Y, Guo J H, et al. Root exudates’ roles and analytical techniques progress. Soils, 2023, 55(2): 225-233. |
| [64] |
陈虹, 唐昊冶, 郭家欢, 根系分泌物主要作用及解析技术进展. 土壤, 2023, 55(2): 225-233. |
| [65] |
Xiao F N, Jiang M, Li Y Y, et al. Community structure and diversity of soil fungi in Tamarix chinensis shrubs in the lower reaches of Tarim River. Arid Land Geography, 2021, 44(3): 759-768. |
| [66] |
肖方南, 姜梦, 李媛媛, 塔里木河下游柽柳灌丛土壤真菌群落结构及多样性分析. 干旱区地理, 2021, 44(3): 759-768. |
| [67] |
Chen F, Zhang J, Han E N, et al. Soil microbial diversity and its relationship with soil physicochemical properties in Urat natural Haloxylon ammodendron forest. Journal of Desert Research, 2022, 42(2): 207-214. |
| [68] |
陈峰, 张静, 韩二牛, 乌拉特天然梭梭(Haloxylon ammodendron)林土壤微生物多样性及其与土壤性质的关系. 中国沙漠, 2022, 42(2): 207-214. |
| [69] |
Domeignoz-Horta L A, Pold G, Liu X A, et al. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 2020, 11(1): 3684. |
| [70] |
Liao J J, Dou Y X, Yang X, et al. Soil microbial community and their functional genes during grassland restoration. Journal of Environmental Management, 2023, 325(1): 116488. |
| [71] |
Liu S Y, Dai J H, Wei H H, et al. Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification pathways are leveraged by cyclic AMP receptor protein (CRP) paralogues based on electron donor/acceptor limitation in Shewanella loihica PV-4. Applied and Environmental Microbiology, 2021, 87(2): e01964-20. |
| [72] |
Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5): 263-276. |
| [73] |
Lata J C, Degrange V, Raynaud X, et al. Grass populations control nitrification in savanna soils. Functional Ecology, 2004, 18(4): 605-611. |
| [74] |
Zakir H A K M, Subbarao G V, Pearse S J, et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist, 2008, 180(2): 442-451. |
| [75] |
Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 2011, 156(3): 989-996. |
| [76] |
Li W J, Wang J L, Jiang L M, et al. Rhizosphere effect and water constraint jointly determined the roles of microorganism in soil phosphorus cycling in arid desert regions. Catena, 2023, 222(3): 106809. |
| [77] |
Bi B, Li G, Goll D S, et al. Soil phosphorus availability and altered root phosphorus-acquisition strategies. Global Change Biology, 2024, 30(5): e17310. |
| [78] |
Wang S Q, Song M H, Wang C M, et al. Mechanisms underlying soil microbial regulation of available phosphorus in a temperate forest exposed to long-term nitrogen addition. Science of the Total Environment, 2023, 904(50): 166403. |
| [79] |
Tao Y, Liu Y B, Wu G L, et al. Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar Desert, China. Acta Prataculturae Sinica, 2016, 25(7): 13-23. |
| [80] |
陶冶, 刘耀斌, 吴甘霖, 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局. 草业学报, 2016, 25(7): 13-23. |
| [81] |
Su P X. Review and prospect of the researches on C4 woody plants and soil inorganic carbon sequestration in deserts of China. Journal of Desert Research, 2022, 42(1): 23-33. |
| [82] |
苏培玺. 中国荒漠C4木本植物和土壤无机固碳研究回顾与展望. 中国沙漠, 2022, 42(1): 23-33. |
| [83] |
Zhang Y, He G X, Yang L L, et al. Phosphorus fertilizer application shifts the rhizosphere bacterial community and their carbon, nitrogen and phosphorus-cycle genes in a Phoebe bournei young plantation. Applied Soil Ecology, 2024, 198(6): 105391. |
国家自然科学基金(32260280)
国家自然科学基金(32360300)
/
| 〈 |
|
〉 |