不同修复材料对退化高寒草地土壤理化性质及微生物群落的影响
张琨 , 乔建霞 , 李金升 , 王育鹏 , 刘克思
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 132 -148.
不同修复材料对退化高寒草地土壤理化性质及微生物群落的影响
Effects of different restoration materials on soil physicochemical properties and microbial communities in degraded alpine grassland
为阐明不同修复材料作用下退化高寒草地土壤理化性质及微生物群落结构的变化规律,以不添加任何材料的退化高寒草地为对照(CK),设置氮肥(22 g·m-2)、生物炭(4 kg·m-2)和微生物菌剂(250 mL·m-2)共3个修复材料处理,探究修复材料对退化高寒草地土壤理化性质及微生物群落的影响。结果表明:修复材料对地上植被生物量有显著促进作用(P<0.05),其中生物炭和微生物菌剂的促进效果较好,总生物量较CK分别提高了151.06%和149.11%。与CK相比,修复材料作用下土壤含水量显著提高(P<0.05),电导率显著下降(P<0.05),土壤养分(碳、氮、磷)含量显著增加(P<0.05),其中土壤有机碳、全氮和有效磷含量在生物炭处理下达到最大。此外,修复材料的施用还引起了土壤微生物群落结构的变化,特别是在生物炭和微生物菌剂的作用下,土壤微生物总量、真菌和细菌含量显著增加(P<0.05),并有效提高了外生菌根真菌、甲烷氧化细菌和腐生真菌的相对含量。方差分解的结果显示,土壤pH、全氮、有机碳及有效磷是影响耕层(0~20 cm)土壤微生物群落结构的主要环境因子。与其他材料不同,生物炭显著促进了微生物与大多数土壤环境因子的互作关系,使土壤环境与微生物群落结构的变化显现出良好的协同性。综上所述,3种修复材料均能改善退化高寒草地的土壤状况,但生物炭对培肥土壤及改善微生物群落结构作用突出,综合修复效果更为显著,在退化高寒草地的修复中具有更大的应用潜力。
The aim of this research was to determine the effects of different restoration materials on soil physicochemical properties and microbial community structure in degraded alpine grassland. Three restoration materials were tested: nitrogen fertilizer (22 g·m-2), biochar (4 kg·m-2), and a microbial inoculant (250 mL·m-2). Degraded alpine grassland without any added materials served as the control (CK). The effects of these restoration materials on soil physicochemical properties and microbial communities in degraded alpine grassland were determined. The results show that the aboveground biomass was significantly affected by the restoration materials (P<0.05), among which biochar and the microbial inoculant had better promoting effects, increasing the total biomass by 151.06% and 149.11%, respectively, compared with that in CK. The soil water content was significantly increased (P<0.05), and the soil electrical conductivity was significantly decreased (P<0.05) in all the restoration treatments, compared with their respective values in CK. All the restoration materials significantly increased (P<0.05) the contents of soil nutrients (carbon, nitrogen, and phosphorus), with the highest concentrations of total organic carbon, total nitrogen, and available phosphorus in the biochar treatment. The addition of restoration materials also affected soil microbial community structure. In particular, the biochar and microbial inoculant treatments resulted in significant increases (P<0.05) in microbial biomass, bacterial biomass, and fungal biomass, and in the relative contents of ectomycorrhizal fungi, methanotrophic bacteria, and saprotrophic fungi. The results of variation partitioning analysis indicated that soil pH, total nitrogen, total organic carbon, and available phosphorus were the main environmental variables affecting the microbial community structure in topsoil (0-20 cm). Unlike other materials, biochar promoted a significant interaction between microorganisms, resulting in good synergy between changes in the soil environment and microbial community structure. In summary, although all three restoration materials improved the soil condition in degraded alpine grassland, biochar showed the best effects to fertilize soil and improve microbial community structure. Thus, biochar has greater potential for use in the restoration of degraded alpine grassland.
修复材料 / 高寒草地 / 土壤理化性质 / 微生物群落 / 退化草地修复
restoration materials / alpine grassland / soil physicochemical properties / microbial communities / degraded grassland restoration
| [1] |
Zhao Y H, Wei X H, Miao Y J, et al. Plant community and reproductive allocation of alpine meadow with different degradation degrees in northern Tibet. Acta Agrestia Sinica, 2012, 20(2): 221-228. |
| [2] |
赵玉红, 魏学红, 苗彦军, 藏北高寒草甸不同退化阶段植物群落特征及其繁殖分配研究. 草地学报, 2012, 20(2): 221-228. |
| [3] |
Zhao G H, Dan Z T Q, Wei X H. A review grassland desertification characteristics of Qinghai-Tibet Plateau. Grassland and Turf, 2012, 32(5): 83-89. |
| [4] |
赵改红, 旦增塔庆, 魏学红. 青藏高原高寒草地沙化特征的研究进展. 草原与草坪, 2012, 32(5): 83-89. |
| [5] |
Li Y K, Han F, Ran F, et al. Effect of typical alpine meadow degradation on soil enzyme and soil nutrient in source region of Three Rivers. Chinese Journal of Grassland, 2008, 4(1): 51-58. |
| [6] |
李以康, 韩发, 冉飞, 三江源区高寒草甸退化对土壤养分和土壤酶活性影响的研究. 中国草地学报, 2008, 4(1): 51-58. |
| [7] |
Wang L, Yu H Y, Zhang Q, et al. Responses of aboveground biomass of alpine grasslands to climate changes on the Qinghai-Tibet Plateau. Journal of Geographical Sciences, 2018, 28(12): 1953-1964. |
| [8] |
Yu H, Liu Q, Deng Y, et al. Effects of reseeding and fertilization on bacterial communities in rhizosphere soil of alpine degraded grassland. Environmental Science, 2024, 45(12): 7350-7357. |
| [9] |
于皓, 刘琦, 邓晔, 补播和施肥对高寒退化草地根际细菌群落的影响. 环境科学, 2024, 45(12): 7350-7357. |
| [10] |
Li J L, Wang Y, Li X L, et al. Spatial distribution characteristics of alpine degraded grassland in source region of Yellow River. Acta Agriculturae Boreali-Occidentalis Sinica, 2024, 33(1): 108-120. |
| [11] |
李积兰, 王苑, 李希来, 黄河源区高寒退化草地空间分布特征. 西北农业学报, 2024, 33(1): 108-120. |
| [12] |
Sun B Y, Ren F P, Shao Y W, et al. Effects of alpine grassland degradation on soil detachment in typical regions of the headwaters of Changjiang River. Journal of Changjiang River Scientific Research Institute, 2023, 40(4): 170-176. |
| [13] |
孙宝洋, 任斐鹏, 邵逸文, 长江源典型地区高寒草地退化对土壤分离的影响. 长江科学院院报, 2023, 40(4): 170-176. |
| [14] |
Witzgall K, Vidal A, Schubert D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 2021, 12(1): 4115. |
| [15] |
Wang L Y, Du Y G, Xu Q M, et al. Effects of grazing on soil organic carbon contents in alpine meadow on Tibetan Plateau. Grassland and Turf, 2023, 43(3): 21-27. |
| [16] |
王灵艳, 杜岩功, 许庆民, 放牧对青藏高原高寒草地土壤有机碳含量的影响. 草原与草坪, 2023, 43(3): 21-27. |
| [17] |
Dong S K, Shang Z H, Gao J X, et al. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture Ecosystems & Environment, 2020, 287(1): 106684. |
| [18] |
Wang Z Q, Zhang J X, Yang X L, et al. Characteristics of soil microbial diversity in different patches of alpine meadow. Acta Agrestia Sinica, 2021, 29(9): 1916-1926. |
| [19] |
王占青, 张杰雪, 杨雪莲, 高寒草甸不同斑块草地土壤微生物多样性特征研究. 草地学报, 2021, 29(9): 1916-1926. |
| [20] |
Li H Y, Yao T, Zhang J G, et al. Spatial-temporal variation of soil microorganism quantity in different perturbed alpine meadows. Journal of Soil and Water Conservation, 2018, 32(4): 177-183. |
| [21] |
李海云, 姚拓, 张建贵, 不同扰动高寒草地土壤微生物数量时空变化特征. 水土保持学报, 2018, 32(4): 177-183. |
| [22] |
Yang J, Wu X, Ruan H, et al. How does grassland degradation affect soil enzyme activity and microbial nutrient limitation in saline-alkaline meadow? Land Degradation & Development, 2023, 34(18): 5863-5875. |
| [23] |
Wang M, Liu M X, Wang Q Y, et al. Soil-microbe characterization and interaction in alpine degraded grassland in Maqu county. China Environmental Science, 2023, 43(12): 6482-6489. |
| [24] |
王敏, 刘旻霞, 王千月, 甘南玛曲高寒退化草地土壤-微生物特征及相互作用. 中国环境科学, 2023, 43(12): 6482-6489. |
| [25] |
Li S X, Yao T, Wang L D, et al. Changes of soil microbial biomass during the restoration of the degraded alpine grassland in eastern Qilian Mountains. Acta Agrestia Sinica, 2023, 31(12): 3668-3675. |
| [26] |
李双雄, 姚拓, 王理德, 祁连山东段退化高寒草地修复过程中土壤微生物生物量变化. 草地学报, 2023, 31(12): 3668-3675. |
| [27] |
Wang J, Huang C Z. Research process of soil amelioration with the application of biochars. Journal of Water Resources and Water Engineering, 2020, 31(3): 246-253. |
| [28] |
王娟, 黄成真. 生物炭对土壤改良效果的研究进展. 水资源与水工程学报, 2020, 31(3): 246-253. |
| [29] |
Zhang N H, Ye X, Liu G X, et al. Effects of biochar application on soil organic carbon content in farmland: a Meta-analysis. Chinese Journal of Soil Science, 2024, 55(2): 532-542. |
| [30] |
张楠海, 叶旭, 刘高祥, 施用生物炭对中国农田土壤有机碳含量的影响-基于Meta分析. 土壤通报, 2024, 55(2): 532-542. |
| [31] |
Sheng Y Q, Zhu L Z. Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of the Total Environment, 2018, 622/623(9): 1391-1399. |
| [32] |
Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 2010, 327(1/2): 235-246. |
| [33] |
Abd El-Mageed T A, Rady M M, Taha R S, et al. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Scientia Horticulturae, 2020, 261(3): 108930. |
| [34] |
Liang J P, Xue Z Q, Yang Z Y, et al. Effects of microbial organic fertilizers on Astragalus membranaceus growth and rhizosphere microbial community. Annals of Microbiology, 2021, 71(1): 11. |
| [35] |
Su D X, Zhang Z H, Chen Z Z, et al. Parameters for degradation, sandification and salification of rangelands, GB19377-2003. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2004. |
| [36] |
苏大学, 张自和, 陈佐忠, 天然草地退化、沙化、盐渍化的分级指标, GB19377-2003. 北京: 中华人民共和国国家质量监督检疫总局, 2004. |
| [37] |
Shi Y, Wang Z Q, Zhang X Y, et al. Effects of nitrogen and phosphorus addition on soil microbial community composition in temperate typical grassland in Inner Mongolia. Acta Ecologica Sinica, 2014, 34(17): 4943-4949. |
| [38] |
施瑶, 王忠强, 张心昱, 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响. 生态学报, 2014, 34(17): 4943-4949. |
| [39] |
Lu R K. Methods of soil agrochemical analysis. Beijing: China Agricultural Science and Technology Press, 2000. |
| [40] |
鲁如坤. 土壤农化分析方法. 北京: 中国农业科技出版社, 2000. |
| [41] |
Djukic I, Zehetner F, Mentler A, et al. Microbial community composition and activity in different alpine vegetation zones. Soil Biology & Biochemistry, 2010, 42(2): 155-161. |
| [42] |
Frostegård A, Tunlid A, Bååth E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 1993, 59(11): 3605-3622. |
| [43] |
Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: A review. Biology Fertility of Soils, 1999, 29(1): 111-129. |
| [44] |
Li J S, Shao X Q, Huang D, et al. The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau. Ecological Engineering, 2020, 158(5/6): 106084. |
| [45] |
Smith A P, Marín-Spiotta E, Balser T, et al. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study. Global Change Biology, 2015, 21(9): 3532-3547. |
| [46] |
Lai J S, Zou Y, Zhang J L, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 2022, 13(4): 782-788. |
| [47] |
Duan C W, Li X L, Ma P P, et al. Effect of artificial restoration measure on soil nutrients and enzyme activities of degraded alpine meadow. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(4): 431-440. |
| [48] |
段成伟, 李希来, 马盼盼, 人工修复措施对退化高寒草甸土壤养分及酶活性的影响. 西北农业学报, 2022, 31(4): 431-440. |
| [49] |
Xie K Y, Li X L, He F, et al. Response of alfalfa and smooth brome to nitrogen fertilizer in monoculture and mixed grasslands. Acta Prataculturae Sinica, 2014, 23(6): 148-156. |
| [50] |
谢开云, 李向林, 何峰, 单播与混播下紫花苜蓿与无芒雀麦生物量对氮肥的响应. 草业学报, 2014, 23(6): 148-156. |
| [51] |
Tian F P, Chen Z X, Shi L. Effects of fertilization on aboveground biomass in Maqu alpine desertification meadow. Chinese Agricultural Science Bulletin, 2012, 28(2): 35-38. |
| [52] |
田福平, 陈子萱, 石磊. 施肥对玛曲高寒沙化草地地上生物量的影响. 中国农学通报, 2012, 28(2): 35-38. |
| [53] |
Song X C, Liu M Q, Wu D, et al. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology, 2015, 89(5): 25-34. |
| [54] |
Li Q P, Bai J H, Yao T, et al. Effects of the combined application of microbial inoculant and nitrogen fertilizer reduction on the growth, and soil physicochemical properties of alfalfa in Hexi area. Acta Agrestia Sinica, 2024, 32(1): 314-321. |
| [55] |
李青璞, 白建海, 姚拓, 微生物菌剂与氮肥配施对紫花苜蓿生长及土壤性质的影响. 草地学报, 2024, 32(1): 314-321. |
| [56] |
Chen H M, Ma J Y, Wei J X, et al. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Science of the Total Environment, 2018, 635(19): 333-342. |
| [57] |
Ma L, Guo X L, Qi H Z, et al. Effects of biochar addition on photosynthetic characteristics and photoresponse of continuous-cropping strawberry. Journal of Northwest Forestry University, 2020, 35(2): 72-78. |
| [58] |
马丽, 郭学良, 齐红志, 生物炭对连作草莓光合特性及光响应的影响. 西北林学院学报, 2020, 35(2): 72-78. |
| [59] |
He X J, Xie H, Gao D M, et al. Biochar and intercropping with potato-onion enhanced the growth and yield advantages of tomato by regulating the soil properties, nutrient uptake, and soil microbial community. Frontiers in Microbiology, 2021, 12(1): 695447. |
| [60] |
Laurent C, Bravin M N, Crouzet O, et al. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Science of the Total Environment, 2020, 709(12): 135927. |
| [61] |
Paymaneh Z, Gryndler M, Konvalinková T, et al. Soil matrix determines the outcome of interaction between mycorrhizal symbiosis and biochar for growth and nutrition. Frontiers in Microbiology, 2018, 9(1): 2862. |
| [62] |
Assainar S K, Abbott L K, Mickan B S, et al. Response of wheat to a multiple species microbial inoculant compared to fertilizer application. Frontiers in Plant Science, 2018, 9(1): 1601. |
| [63] |
Wang X B, Zhou W, Liang G Q, et al. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Science of the Total Environment, 2015, 538(27): 137-144. |
| [64] |
Pan S Y, Dong C D, Su J F, et al. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems. Sustainability, 2021, 13(10): 5612. |
| [65] |
Li J S, Zhao Y Q, Shao X Q, et al. The mixed addition of biochar and nitrogen improves soil properties and microbial structure of moderate-severe degraded alpine grassland in Qinghai-Tibet Plateau. Frontiers in Plant Science, 2021, 12(1): 765041. |
| [66] |
Jien S H, Kuo Y L, Liao C S, et al. Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil. Environmental Pollution, 2021, 272(6): 116009. |
| [67] |
Yang W L, Gong T, Wang J W, et al. Effects of compound microbial fertilizer on soil characteristics and yield of wheat (Triticum aestivum L.). Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2740-2748. |
| [68] |
Xiang J L, Jin J, Liu Q, et al. Alkalinity gradients in grasslands alter soil bacterial community composition and function. Soil Science Society of America Journal, 2021, 85(2): 286-298. |
| [69] |
Ren H, Qin X H, Huang B L, et al. Responses of soil enzyme activities and plant growth in a Eucalyptus seedling plantation amended with bacterial fertilizers. Archives of Microbiology, 2020, 202(6): 1381-1396. |
| [70] |
Fang Z, Li D D, Jiao F, et al. The latitudinal patterns of leaf and soil C∶N∶P stoichiometry in the Loess Plateau of China. Frontiers in Plant Science, 2019, 10(1): 85. |
| [71] |
Sun J, Gao P, Li C, et al. Ecological stoichiometry characteristics of the leaf-litter-soil continuum of Quercus acutissima Carr. and Pinus densiflora Sieb. in Northern China. Environmental Earth Sciences, 2019, 78(1): 1-13. |
| [72] |
Reed E Y, Chadwick D R, Hill P W, et al. Critical comparison of the impact of biochar and wood ash on soil organic matter cycling and grassland productivity. Soil Biology & Biochemistry, 2017, 110(1): 134-142. |
| [73] |
Han F P, Ren L L, Zhang X C, et al. Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. Catena, 2016, 137(2): 554-562. |
| [74] |
Mise K, Koyama Y, Matsumoto A, et al. Pectin drives microbial phosphorus solubilization in soil: Evidence from isolation-based and community-scale approaches. European Journal of Soil Biology, 2020, 97(2): 103169. |
| [75] |
Zong N, Shi P L, Niu B, et al. Effects of nitrogen and phosphorous fertilization on community structure and productivity of degraded alpine meadows in northern Tibet, China. Chinese Journal of Applied Ecology, 2014, 25(12): 3458-3468. |
| [76] |
宗宁, 石培礼, 牛犇, 氮磷配施对藏北退化高寒草甸群落结构和生产力的影响. 应用生态学报, 2014, 25(12): 3458-3468. |
| [77] |
Wei C Z, Yu Q, Bai E, et al. Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology, 2013, 19(12): 3688-3697. |
| [78] |
Tan Z X, Ye Z X, Zhang L M, et al. Application of the 15N tracer method to study the effect of pyrolysis temperature and atmosphere on the distribution of biochar nitrogen in the biomass-biochar-plant system. Science of the Total Environment, 2018, 622/623(9): 79-87. |
| [79] |
Ye Z X, Liu L Y, Tan Z X, et al. Effects of pyrolysis conditions on migration and distribution of biochar nitrogen in the soil-plant-atmosphere system. Science of the Total Environment, 2020, 723(26): 138006. |
| [80] |
Yan B, Lu Q, Xia S, et al. An overview of advances in soil microbial diversity of urban environment. Biodiversity Science, 2022, 30(8): 187-200. |
| [81] |
闫冰, 陆晴, 夏嵩, 城市土壤微生物多样性研究进展. 生物多样性, 2022, 30(8): 187-200. |
| [82] |
Chen Y X, Song T T, Fang M, et al. The effect of four biochar on the structure of microbial communities in alluvial soil. Journal of Agro-Environment Science, 2019, 38(2): 394-404. |
| [83] |
陈义轩, 宋婷婷, 方明, 四种生物炭对潮土土壤微生物群落结构的影响. 农业环境科学学报, 2019, 38(2): 394-404. |
| [84] |
Liu J L, Zhang Y R, Wang Y G, et al. Research progress on the effects of biochar on soil microorganisms. Chinese Agricultural Science Bulletin, 2023, 39(26): 60-66. |
| [85] |
刘金灵, 张亚茹, 王宇光, 生物炭对土壤微生物影响的研究进展. 中国农学通报, 2023, 39(26): 60-66. |
| [86] |
Jiménez-Gómez A, García-Estévez I, García-Fraile P, et al. Increase in phenolic compounds of Coriandrum sativum L. after the application of a Bacillus halotolerans biofertilizer. Journal of the Science of Food and Agriculture, 2020, 100(6): 2742-2749. |
| [87] |
Gao R M, Yan J, Zou S, et al. Effects of nitrogen fertilizer on microbial community and metabolism in rhizosphere soil of soybean. Soils and Crops, 2023, 12(4): 373-384. |
| [88] |
高瑞敏, 严君, 邹狮, 氮肥对大豆根际土壤微生物群落和代谢的影响. 土壤与作物, 2023, 12(4): 373-384. |
| [89] |
Lazarovits G. Management of soil-borne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Canadian Journal of Plant Pathology, 2001, 23(1): 1-7. |
| [90] |
Manici L M, Caputo F. Soil fungal communities as indicators for replanting new peach orchards in intensively cultivated areas. European Journal of Agronomy, 2010, 33(3): 188-196. |
| [91] |
Moyano J, Chiuffo M C, Policelli N, et al. The interplay between propagule pressure, seed predation and ectomycorrhizal fungi in plant invasion. NeoBiota, 2019, 42(22): 45-58. |
| [92] |
Li J W, Li M Y, Dong L B, et al. Plant productivity and microbial composition drive soil carbon and nitrogen sequestrations following cropland abandonment. Science of the Total Environment, 2020, 744(47): 140802. |
| [93] |
Zhao R X, Feng J, Liu J, et al. Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics. Water Research, 2019, 151(1): 388-402. |
| [94] |
Qin W X, Si G C, Lei T Z, et al. Influences of nitrogen fertilizer addition on soil microbial biomass and enzyme activities. Jiangsu Agricultural Sciences, 2021, 49(1): 170-175. |
| [95] |
秦玮玺, 斯贵才, 雷天柱, 氮肥添加对土壤微生物生物量及酶活性的影响. 江苏农业科学, 2021, 49(1): 170-175. |
| [96] |
Jiang S, Zhang Z S, Li M, et al. Effect of short-term biochar addition on soil microbial community structure in degraded saline-alkali wetland. Soils and Crops, 2023, 12(2): 225-233. |
| [97] |
姜珊, 张仲胜, 李敏, 短期生物炭添加对退化盐碱湿地土壤微生物群落结构特征影响. 土壤与作物, 2023, 12(2): 225-233. |
| [98] |
Zhu L X, Xiao Q, Shen Y F, et al. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau. Ecotoxicology and Environmental Safety, 2017, 144(1): 578-584. |
国家自然科学基金(32271764)
安徽省高校基金(2023AH051011)
山西大同大学产学研项目(2022CXY22)
/
| 〈 |
|
〉 |