耐瘠高产型玉米品种主要农艺性状特征分析
李长青 , 宋亚茹 , 肖凡 , 缪春语 , 孙梦宇 , 纪萌 , 孙志梅
草业学报 ›› 2025, Vol. 34 ›› Issue (09) : 97 -110.
耐瘠高产型玉米品种主要农艺性状特征分析
Analysis of main agronomic traits of low-fertility-tolerant and high-yielding maize varieties
在氮磷复合限制型障碍土壤上,通过田间小区试验,对施肥和不施肥下10个供试玉米品种的株型特征、穗部特征及产量进行比较分析,探明不同玉米品种的耐瘠能力差异,并解析耐瘠高产型玉米品种的主要农艺性状特征,为适宜于瘠薄障碍型中低产田土壤的耐瘠高产玉米品种的选育提供科学依据。根据施肥和不施肥条件下的玉米平均产量将10个供试玉米品种分为耐瘠高产型(HB)、不耐瘠高产型(HNB)和不耐瘠次高产型(SHNB)3类,其中HB型品种的施肥增产效应明显低于HNB和SHNB型玉米品种。在瘠薄土壤不施肥条件下,HB型玉米的株高、穗位高、穗长、行粒数和穗粒数均显著高于HNB和SHNB型品种,而秃尖长显著降低,各农艺性状耦合协调度显著提高。而在施肥条件下,虽然上述农艺性状与HNB型没有显著差异,但均显著高于SHNB型品种。通过各农艺性状指标与产量的边界线分析得出,在瘠薄土壤上获得12000 kg·hm-2的目标产量,HB型玉米的农艺性状需要达到的适宜范围分别为:穗长17.80~20.42 cm,秃尖长<0.05 cm,行粒数34.32~40.36,穗粒数578.95~691.55,百粒重34.31~39.70 g,株高229.43~256.98 cm,穗位高103.38~125.52 cm。综上,在氮磷含量均低的瘠薄型中低产田上,HB型玉米通过保持较长的穗长和较短的秃尖长来实现行粒数和穗粒数的显著提高,各农艺性状的耦合协调度也明显提高,最终表现出了在瘠薄土壤上明显的产量优势。
In this study, field experiments were conducted in nitrogen and phosphorus co-limited soil treated with and without fertilizer application to analyze the differences in plant traits, ear traits, and yield of ten maize (Zea mays) varieties. The aims were to explore the differences in low-fertility tolerance among maize varieties, and identify the main agronomic traits of low-fertility-tolerant and high-yielding maize varieties, thereby providing a scientific basis for selecting and breeding maize varieties that are suitable for low-to-medium-yielding fields with nutrient deficiencies. Based on the average yields under these conditions, the ten maize varieties were classified into three types: low-fertility-tolerant and high-yielding type (HB), low-fertility-intolerant and high-yielding type (HNB), and low-fertility-intolerant and medium-yielding type (SHNB). The yield increase from fertilization of the HB-type was significantly lower than that of HNB and SHNB types. Without fertilizer in low-fertility soil, the HB-type exhibited significantly greater plant height, ear height, ear length, kernels per row, and kernels per ear, compared to HNB and SHNB types, while the bald tip length was significantly shorter, and the coupling coordination degree of agronomic traits was significantly higher. Under fertilization, although the above agronomic traits of the HB-type did not differ significantly from those of the HNB-type, they were significantly higher than those of the SHNB-type. Boundary line analysis of agronomic traits and yields revealed that, to achieve a target yield of 12000 kg·ha-1 in low-fertility soil, the suitable ranges for agronomic traits of the HB-type were: ear length 17.80-20.42 cm; bald tip length <0.05 cm; kernels per row 34.32-40.36; kernels per ear 578.95-691.55; 100-grain weight 34.31-39.70 g; plant height 229.43-256.98 cm; and ear height 103.38-125.52 cm. In conclusion, in low-to-medium-yielding fields with nitrogen and phosphorus co-limitation, the HB-type maize varieties achieved a significantly higher kernels per row and kernels per ear by maintaining a longer ear length and shorter bald tip length. The coupling coordination degree of agronomic traits was also significantly higher, ultimately demonstrating an obvious yield advantage in low-fertility soil.
玉米品种 / 耐瘠高产 / 农艺性状 / 耦合协调度 / 边界线分析
maize varieties / low-fertility-tolerance and high-yield / agronomic traits / coupling coordination degree / boundary line analysis
| [1] |
Niu L L, Qin W F, You Y L, et al. Effects of precipitation variability and conservation tillage on soil moisture, yield and quality of silage maize. Frontiers in Sustainable Food Systems, 2023, 7: 1198649. |
| [2] |
Bai J, Tian W C, Qiu Z J, et al. Effects of different nitrogen types and levels on the yield and forage quality of silage maize in saline-alkali soil. Journal of Plant Nutrition and Fertilizers, 2024, 30(9): 1683-1693. |
| [3] |
白炬, 田伟辰, 仇子健, 不同氮肥类型及用量对盐碱耕地青贮玉米产量及饲用品质的影响. 植物营养与肥料学报, 2024, 30(9): 1683-1693. |
| [4] |
Rizzo G, Monzon J P, Tenorio F A, et al. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(4): 1-6. |
| [5] |
Li A Q, Zhang J, Cui X L, et al. Nitrogen fertilizer synergist in urea under irrigation for high yield of summer maize at the filling stage. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 99-110. |
| [6] |
李澳旗, 张俊, 崔晓路, 不同灌水量下尿素添加适宜氮肥增效剂促进夏玉米灌浆增产. 农业工程学报, 2023, 39(16): 99-110. |
| [7] |
Liu H, Zhu X M, Zhuo F Y, et al. Evaluation of the contribution of pest control to three major grain crops in China in 2023. China Plant Protection, 2024, 44(1): 62-66, 103. |
| [8] |
刘慧, 朱晓明, 卓富彦, 2023年全国三大粮食作物病虫害防控植保贡献率评价研究报告. 中国植保导刊, 2024, 44(1): 62-66, 103. |
| [9] |
Dai J R, E L Z. Scientific and technological innovation of maize breeding in China. Journal of Maize Sciences, 2010, 18(1): 1-5. |
| [10] |
戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010, 18(1): 1-5. |
| [11] |
Yang D. Contribution analysis of driving factors for maize yield growth in China. Beijing: Chinese Academy of Agricultural Sciences, 2017. |
| [12] |
杨笛. 中国玉米产量增长的驱动因素分析. 北京: 中国农业科学院, 2017. |
| [13] |
Sun B, Zhu A N, Yao R J, et al. Research progress on barrier remediation technology and productivity enhancement model for fluvo-aquic soil, red soil, and saline-alkali soil. Acta Pedologica Sinica, 2023, 60(5): 1231-1247. |
| [14] |
孙波, 朱安宁, 姚荣江, 潮土、红壤和盐碱地障碍消减技术与产能提升模式研究进展. 土壤学报, 2023, 60(5): 1231-1247. |
| [15] |
Zhao G, Wang S Y, Fan T L, et al. Effects of planting density of different plant type maize on yield in northwest dry highland of loess plateau. Agricultural Research in the Arid Areas, 2018, 36(4): 101-108. |
| [16] |
赵刚, 王淑英, 樊廷录, 西北旱塬区不同株型玉米增密对产量的影响. 干旱地区农业研究, 2018, 36(4): 101-108. |
| [17] |
Department of Seed Industry Management, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. On the publicity of varieties approved by the Third Variety Approval Meeting of the Fifth National Crop Variety Approval Committee. (2023-08-03)[2024-09-01]. http://www.zys.moa.gov.cn/gsgg/202308/t20230803_6433424.htm. |
| [18] |
中华人民共和国农业农村部种业管理司. 关于第五届国家农作物品种审定委员会第三次品种审定会议通过品种的公示. (2023-08-03)[2024-09-01]. http://www.zys.moa.gov.cn/gsgg/202308/t20230803_6433424.htm. |
| [19] |
Xu T J, Lü T F, Li Z H, et al. Comparison of heat tolerance of maize hybrids and their parental inbreds with different genotypes. Scientia Agricultura Sinica, 2024, 57(2): 403-415. |
| [20] |
徐田军, 吕天放, 李自豪, 不同玉米杂交种及其亲本自交系耐热性的差异比较. 中国农业科学, 2024, 57(2): 403-415. |
| [21] |
Cui R, Wang T Y, Wang C Y, et al. Effects of drought stress on growth characters and yield of different maize varieties. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 94-100. |
| [22] |
崔蓉, 王天野, 王呈玉, 干旱胁迫对不同玉米品种生长性状及产量的影响. 华北农学报, 2021, 36(S1): 94-100. |
| [23] |
Zhang J M. Evaluation of adaptability of different maize varieties in medium saline-alkali land. Yinchuan: Ningxia University, 2024. |
| [24] |
张晋美. 不同品种玉米在中度盐碱地适应性评价. 银川: 宁夏大学, 2024. |
| [25] |
Cao C Y, Dang H K, Li J, et al. Responses of yield traits and grain filling characteristics of maize to sowing dates and their relationships with meteorological factors. Chinese Journal of Eco-Agriculture, 2023, 31(5): 710-724. |
| [26] |
曹彩云, 党红凯, 李佳, 一年一作玉米产量性状和籽粒灌浆特性对播期的响应及其与气象因子的关系. 中国生态农业学报(中英文), 2023, 31(5): 710-724. |
| [27] |
Zhang J J, Chen J P, Tang Y L, et al. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering. Acta Agronomica Sinica, 2023, 49(5): 1397-1409. |
| [28] |
张俊杰, 陈金平, 汤钰镂, 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响. 作物学报, 2023, 49(5): 1397-1409. |
| [29] |
Zhang Y H, Wang R, Xu Z G, et al. Responses of yield traits to planting density and cultivar of spring maize in drylands under different rainfall types. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 136-144. |
| [30] |
张元红, 王瑞, 徐宗贵, 不同降水年型下旱地玉米产量性状对种植密度和品种的响应. 农业工程学报, 2021, 37(22): 136-144. |
| [31] |
Department of Agriculture and Rural Affairs of Hebei Province. Classification diagnosis of main indexes of cultivated land fertility: DB 13/T 5406-2021. https://www.guoturen.com/wenku-1244. |
| [32] |
河北省农业农村厅. 耕地地力主要指标分级诊断: DB 13/T 5406-2021. https://www.guoturen.com/wenku-1244. |
| [33] |
Bo Q F, Ma T, Wei X X, et al. Improvement of maize post-silking agronomic traits contributes to high grain yield under N-efficient cultivars. Field Crops Research, 2024, 313: 109417. |
| [34] |
Zhou J, Ma S P. Analysis method and application of SPSSAU scientific research data. Beijing: Publishing House of Electronics Industry, 2024. |
| [35] |
周俊, 马世澎. SPSSAU科研数据分析方法与应用. 北京: 电子工业出版社, 2024. |
| [36] |
Wang D, Zhou Y Y, Guo L H, et al. Leaf NPK concentration requisite and chemical fertilizer inputs for high yield and quality of peach production in central Hebei Province. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 269-278. |
| [37] |
王栋, 周媛媛, 郭路航, 冀中地区桃树优质高产的叶片氮磷钾临界值范围及化肥投入量. 植物营养与肥料学报, 2022, 28(2): 269-278. |
| [38] |
Xiong S P, Wu K Y, Wang X C, et al. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency. Scientia Agricultura Sinica, 2016, 49(12): 2267-2279. |
| [39] |
熊淑萍, 吴克远, 王小纯, 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016, 49(12): 2267-2279. |
| [40] |
Liu Y E, Hou P, Zhang W Y, et al. Drought resistance of nine maize cultivars released from the 1970s through the 2010s in China. Field Crops Research, 2023, 302: 109065. |
| [41] |
Zhang P P, Liu J B, Huang L, et al. Screening of high nitrogen use efficiency varieties and analysis of yield increase potentials of summer maize in Huang-Huai-Hai region. Journal of Maize Sciences, 2022, 30(5): 35-44. |
| [42] |
张盼盼, 刘京宝, 黄璐, 黄淮海地区夏玉米氮高效品种筛选及增产潜力分析. 玉米科学, 2022, 30(5): 35-44. |
| [43] |
Feng J X. Effects of plant type characteristics on population structure of maize varieties. Baoding: Hebei Agricultural University, 2021. |
| [44] |
冯家兴. 玉米品种株型特征对群体结构的影响. 保定: 河北农业大学, 2021. |
| [45] |
Sharma L K, Bu H, Franzen D W, et al. Use of corn height measured with an acoustic sensor improves yield estimation with ground based active optical sensors. Computers and Electronics in Agriculture, 2016, 124: 254-262. |
| [46] |
Lindsey A J, Barker D J, Metzger J D, et al. Physiological and morphological response of a drought-tolerant maize hybrid to agronomic management. Agronomy Journal, 2018, 110: 1354-1362. |
| [47] |
Sun J Y, Li S M, Dong L P. Analysis on plant characteristics, yield structure and yield-increasing potential of different maize varieties. China Seed Industry, 2014(4): 44-46. |
| [48] |
孙君艳, 李淑梅, 董丽平. 不同玉米品种的植株特性与产量结构及其增产潜力分析. 中国种业, 2014(4): 44-46. |
| [49] |
Xue H Y, Han Y C, Li Y B, et al. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Research, 2015, 184: 17-27. |
| [50] |
Wang M, Zhou G Y, Gao J L, et al. Distribution and matching characteristics of light and nitrogen in maize canopy of high-density tolerance varieties. Acta Agronomica Sinica, 2022, 48(12): 3179-3191. |
| [51] |
王梦, 周光远, 高聚林, 玉米耐高密品种冠层光氮分布及匹配特征研究. 作物学报, 2022, 48(12): 3179-3191. |
| [52] |
Kang C R, Xie J H, Li L L, et al. Effects of planting density and nitrogen fertilizer rate on maize yield and photosynthetic characteristics in arid areas of central Gansu, China. Acta Prataculturae Sinica, 2020, 29(5): 141-149. |
| [53] |
康彩睿, 谢军红, 李玲玲, 种植密度与施氮量对陇中旱农区玉米产量及光合特性的影响. 草业学报, 2020, 29(5): 141-149. |
| [54] |
Subedi K D, Ma B L. Ear position, leaf area, and contribution of individual leaves to grain yield in conventional and leafy maize hybrids. Crop Science, 2005, 45: 2246-2256. |
| [55] |
Zhao Y, Zhang S, Lv Y, et al. Optimizing ear-plant height ratio to improve kernel number and lodging resistance in maize (Zea mays L.). Field Crops Research, 2022, 276: 108376. |
| [56] |
Tang Q, Ren J H, Du X, et al. Reduced stem nonstructural carbohydrates caused by plant growth retardant had adverse effects on maize yield under low density. Frontiers in Plant Science, 2022, 13: 1035254. |
| [57] |
Cao W X. General introduction of crop cultivation (second edition). Beijing: Science Press, 2011. |
| [58] |
曹卫星. 作物栽培学总论(第二版). 北京: 科学出版社, 2011. |
| [59] |
Lu W P, Chen G P, Guo J L, et al. Study on the source and sink in relation to grain yield under different ecological areas in maize (Zea mays L.). Acta Agronomica Sinica, 1997(6): 727-733. |
| [60] |
陆卫平, 陈国平, 郭景伦, 不同生态条件下玉米产量源库关系的研究. 作物学报, 1997(6): 727-733. |
| [61] |
Wang Y H, Wang K R, Zhao R L, et al. Relationship between the source and sink of spring maize with high yield. Scientia Agricultura Sinica, 2013, 46(2): 257-269. |
| [62] |
王永宏, 王克如, 赵如浪, 高产春玉米源库特征及其关系. 中国农业科学, 2013, 46(2): 257-269. |
| [63] |
Dai M H, Zhao J R, Yang G H, et al. Source-sink relationship and carbon-nitrogen metabolism of maize in different ecological regions and varieties. Scientia Agricultura Sinica, 2011, 44(8): 1585-1595. |
| [64] |
戴明宏, 赵久然, 杨国航, 不同生态区和不同品种玉米的源库关系及碳氮代谢. 中国农业科学, 2011, 44(8): 1585-1595. |
国家重点研发计划(2021YFD1901004)
/
| 〈 |
|
〉 |