梭梭14-3-3蛋白HaFT-9在高温-干旱胁迫信号交叉调控中的功能研究
刘媛媛 , 王旭 , 魏琪 , 车丽娟 , 袁梦 , 王波
草业学报 ›› 2025, Vol. 34 ›› Issue (09) : 134 -146.
梭梭14-3-3蛋白HaFT-9在高温-干旱胁迫信号交叉调控中的功能研究
The role of HaFT-9, a 14-3-3 protein from Haloxylon ammodendron, in the cross regulation of high temperature and drought stress
先前的研究表明,梭梭幼苗在生长过程中通过胁迫锻炼而获得高温、干旱等胁迫耐受性,并且14-3-3蛋白基因HaFT-9的表达受到高温和干旱胁迫的诱导,提示HaFT-9可能参与高温与干旱胁迫信号的交叉调控。为此,本研究探讨了HaFT-9在高温与干旱胁迫交叉调控作用中的功能。通过对梭梭幼苗进行高温胁迫锻炼后,再施加干旱胁迫,发现高温胁迫锻炼显著促进了HaFT-9在次级干旱胁迫下的表达。进一步的试验表明,经过高温胁迫锻炼与次级干旱胁迫处理,HaFT-9过表达的拟南芥株系表现出比野生型更高的存活率和更低的细胞死亡率。在次级干旱胁迫条件下,HaFT-9过表达株系中P5CS1、P5CS2、CAT2、CHLI1、HSP21、HsfA2及BI-1等抗逆相关基因的表达水平均显著升高。同时,过表达株系中的过氧化氢酶(CAT)活性、脯氨酸和叶绿素含量也显著增加,丙二醛(MDA)含量则显著降低,而且过表达株系的二氨基联苯胺(DAB)与硝基氮蓝四唑(NBT)染色较浅。综上所述,HaFT-9的过表达显著增强了拟南芥对次级干旱胁迫的适应性,表明HaFT-9在高温与干旱胁迫信号交叉响应中发挥了关键的调控作用。本研究为深入理解梭梭幼苗的耐逆分子机制提供了理论依据,并为保护其种质资源提供了参考。
Previous research has demonstrated that Haloxylon ammodendron seedlings acquire resistance to stressors like high temperatures and drought through adaptive stress conditioning during their growth. Additionally, the expression of the 14-3-3 protein gene HaFT-9 is significantly upregulated in response to high temperature and drought stress, suggesting a potential role in mediating crosstalk between these stress pathways. This study further investigates the role of HaFT-9 in the cross-regulation of high temperature and drought stress signals. Pre-treatment of H. ammodendron seedlings with heat stress, followed by a subsequent drought stress challenge, significantly increased HaFT-9 expression during drought stress. Comparative experiments demonstrated that Arabidopsis thaliana lines overexpressing HaFT-9 showed higher survival rates and reduced cellular mortality under sequential heat and drought stress compared to wild-type controls. Notably, the lines overexpressing HaFT-9 exhibited enhanced expression of several key stress-responsive genes, including P5CS1, P5CS2, CAT2, CHLI1, HSP21, HsfA2 and BI-1, in response to subsequent drought stress.In addition, these lines showed significantly enhanced catalase (CAT) activity, increased proline and chlorophyll levels, while the content of malondialdehyde (MDA) was significantly reduced. Moreover, staining with diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) in overexpressing lines was lighter. In conclusion, HaFT-9 overexpression markedly improves drought tolerance in A. thaliana, underscoring its critical regulatory role in modulating the interplay between high temperature and drought stress responses. This study provides valuable insights into the molecular mechanisms underlying stress tolerance in H. ammodendron seedlings and provides data relevant to the conservation of its germplasm resources.
Haloxylon ammodendron / high temperature / drought / cross regulation / HaFT-9
| [1] |
Paul A L, Denison F C, Schultz E R, et al. 14-3-3 phosphoprotein interaction networks-does isoform diversity present functional interaction specification? Frontiers in Plant Science, 2012, 3: 190. |
| [2] |
Li X D, Wu J H, Sun F, et al. Enhanced tolerance of Arabidopsis over expressing Fa14-3-3C from tall fescue (Festuca arundinacea) to low-nitrogen stress. Acta Prataculturae Sinica, 2017, 26(9): 104-112. |
| [3] |
李小冬, 吴佳海, 孙方, 过量表达Fa14-3-3C促进拟南芥对低氮胁迫耐受性的研究. 草业学报, 2017, 26(9): 104-112. |
| [4] |
Zhou H P, Lin H X, Chen S, et al. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell, 2014, 26(3): 1166-1182. |
| [5] |
Hilker M, Schmülling T. Stress priming, memory, and signalling in plants. Plant Cell and Environment, 2019, 42(3): 753-761. |
| [6] |
Liang X H, Ai F F, Zhong T X, et al. Cross adaptation under drought and low temperature stress in perennial ryegrass. Acta Prataculturae Sinica, 2016, 25(1): 163-170. |
| [7] |
梁小红, 艾非凡, 钟天秀, 多年生黑麦草对干旱-低温交叉适应的生理响应. 草业学报, 2016, 25(1): 163-170. |
| [8] |
Liu H P, Able A J, Able J A. Priming crops for the future: rewiring stress memory. Trends in Plant Science, 2022, 27(7): 699-716. |
| [9] |
Gallusci P, Agius D R, Moschou P N, et al. Deep inside the epigenetic memories of stressed plants. Trends in Plant Science, 2023, 28(2): 142-153. |
| [10] |
Lu Y, Lei J Q, Zeng F J, et al. Effects of salt treatments on the growth and ecophysiological characteristics of Haloxylon ammodendron. Acta Prataculturae Sinica, 2014, 23(3): 152-159. |
| [11] |
鲁艳, 雷加强, 曾凡江, NaCl处理对梭梭生长及生理生态特征的影响. 草业学报, 2014, 23(3): 152-159. |
| [12] |
Ma H, Zhang H, Ma L, et al. None-watering and tube-protecting planting technique for Haloxylon ammodendron under desert and its extension. Scientia Sinica (Vitae), 2014, 44(3): 248-256. |
| [13] |
麻浩, 张桦, 马林, 无灌溉管件防护梭梭荒漠造林新技术及其示范推广. 中国科学(生命科学), 2014, 44(3): 248-256. |
| [14] |
Pan R, Ren W J, Liu S S, et al. Ectopic over-expression of HaFT-1, a 14-3-3 protein from Haloxylon ammodendron, enhances acquired thermotolerance in transgenic Arabidopsis. Plant Molecular Biology, 2023, 112(4/5): 261-277. |
| [15] |
Cao Y H, Ren W, Gao H J, et al. HaASR2 from Haloxylon ammodendron confers drought and salt tolerance in plants. Plant Science, 2023, 328: 111572. |
| [16] |
Wang J. Expression patterns and functional analysis of 14-3-3 genes related to stress resistance of Haloxylon ammodendron. Urumqi: Xinjiang Agricultural University, 2017. |
| [17] |
王娇. 与抗逆相关的梭梭14-3-3蛋白基因的表达模式和功能分析. 乌鲁木齐: 新疆农业大学, 2017. |
| [18] |
Liu S S, Wang B, Zong X F, et al. Cloning and characterization analysis of HaFT-9 gene in 14-3-3 protein in Haloxylon ammodendron. Xinjiang Agricultural Sciences, 2019, 56(6): 1083-1094. |
| [19] |
刘栓栓, 王波, 宗兴风, 梭梭14-3-3蛋白基因HaFT-9的克隆及特性分析. 新疆农业科学, 2019, 56(6): 1083-1094. |
| [20] |
Wei Q. Functional analysis of heat stress memory key genes HaHsfA2a and HaFT-9 under abiotic stress in Haloxylon ammodendron. Urumqi: Xinjiang Agricultural University, 2023. |
| [21] |
魏琪. 梭梭高温胁迫记忆关键基因HaHsfA2a与HaFT-9在非生物胁迫下的功能分析. 乌鲁木齐: 新疆农业大学, 2023. |
| [22] |
Montero-Barrientos M, Hermosa R, Cardoza R E, et al. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 2010, 167(8): 659-665. |
| [23] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25(4): 402-408. |
| [24] |
Xu M, Liu J, Ayiguli A. Comparative methods on chlorophyll extraction in plant physiology experiment teaching. Experiment Science and Technology, 2018, 16(4): 129-133. |
| [25] |
徐敏, 刘君, 阿衣古力·阿布都瓦依提. 植物生理实验教学中叶绿素提取方法比较. 实验科学与技术, 2018, 16(4): 129-133. |
| [26] |
Li W Y, Chen Y F, He H, et al. Effects of high temperature exercise on growth and physiological and biochemical characters of Taxus wallichiana var. mairei under drought stress. Shandong Agricultural Sciences, 2023, 55(9): 57-63. |
| [27] |
李文杨, 陈亚飞, 何辉, 高温锻炼对干旱胁迫下南方红豆杉生长和生理生化指标的影响. 山东农业科学, 2023, 55(9): 57-63. |
| [28] |
Fan Z H, Zhu Y Q, Kuang W, et al. The 14-3-3 protein GRF8 modulates salt stress tolerance in apple via the WRKY18-SOS pathway. Plant Physiology, 2024, 194(3): 1906-1922. |
| [29] |
Ren Y R, Yang Y Y, Zhang R, et al. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. Plant Science, 2019, 288: 110219. |
| [30] |
Sirichandra C, Davanture M, Turk B E, et al. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One, 2010, 5(11): e13935. |
| [31] |
Jiang W, Tong T, Li W, et al. Molecular evolution of plant 14-3-3 proteins and function of Hv14-3-3A in stomatal regulation and drought tolerance. Plant Cell Physiology, 2023, 63(12): 1857-1872. |
| [32] |
Wiese A J, Steinbachová L, Timofejeva L, et al. Arabidopsis bZIP18 and bZIP52 accumulate in nuclei following heat stress where they regulate the expression of a similar set of genes. International Journal of Molecular Sciences, 2021, 22(2): 530. |
| [33] |
Liu J Z, Feng L L, Gu X T, et al. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research, 2019, 29(5): 379-390. |
| [34] |
Kim J M, To T K, Seki M. An epigenetic integrator: new insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6. Plant and Cell Physiology, 2012, 53(5): 794-800. |
| [35] |
Liu M Y, Guo L Z, Yue Y S, et al. Physiological and antioxidant enzyme gene expression differences between female and male Buchloe dactyloides plants under drought stress. Acta Prataculturae Sinica, 2023, 32(10): 93-103. |
| [36] |
刘牧野, 郭丽珠, 岳跃森, 干旱胁迫下不同性别野牛草生理及抗氧化酶基因表达差异. 草业学报, 2023, 32(10): 93-103. |
| [37] |
Zhang J, Cheng K, Wang Y C. Analysis of the calcium-dependent protein kinase RtCDPK16 response to abiotic stress in Reaumuria trigyna. Acta Prataculturae Sinica, 2023, 32(2): 97-109. |
| [38] |
张洁, 程凯, 王迎春. 长叶红砂钙依赖蛋白激酶RtCDPK16的非生物胁迫应答分析. 草业学报, 2023, 32(2): 97-109. |
| [39] |
Liu J P, Sun X J, Liao W C, et al. Involvement of OsGF14b adaptation in the drought resistance of rice plants. Rice, 2019, 12(1): 82. |
| [40] |
Lukaszewicz M, Matysiak-Kata I, Aksamit A, et al. 14-3-3 protein regulation of the antioxidant capacity of transgenic potato tubers. Plant Science, 2002, 163(1): 125-130. |
| [41] |
Wang L Y, Tian Y C, Shi W, et al. The miR396-GRFs module mediates the prevention of photo-oxidative damage by brassinosteroids during seedling de-etiolation in Arabidopsis. Plant Cell, 2020, 32(8): 2525-2542. |
| [42] |
Liu X, Challabathula D K, Quan W L, et al. Transcriptional and metabolic changes in the desiccation tolerant plant Craterostigma plantagineum during recurrent exposures to dehydration. Planta, 2019, 249(4): 1017-1035. |
国家自然科学基金项目(32360079)
/
| 〈 |
|
〉 |