紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析
邹苇鹏 , 刘怡 , 翟佳兴 , 周思懿 , 宫祉祎 , 岑慧芳 , 朱慧森 , 许涛
草业学报 ›› 2025, Vol. 34 ›› Issue (09) : 121 -133.
紫花苜蓿MsNAC053基因克隆及其对非生物胁迫的响应分析
Cloning of MsNAC053 from alfalfa and analysis of its transcript profile in response to abiotic stresses
NAC(NAM、ATAF1/2、CUC1/2)转录因子是植物特有的转录因子,在调控植物生长发育、激素信号转导及胁迫响应等过程中发挥重要作用。紫花苜蓿是世界范围内重要的豆科牧草之一,营养丰富,品质优良。为探究紫花苜蓿NAC053基因功能,利用SnapGene及NCBI设计特异性引物并利用PCR技术克隆MsNAC053基因,利用生物信息学软件分析其蛋白质理化性质、二级结构和亚细胞定位情况等,并使用实时荧光定量PCR(qRT-PCR)分析MsNAC053基因在紫花苜蓿不同组织中的表达模式及对不同非生物胁迫的响应情况,利用农杆菌介导法将DNA酶切及连接构建的亚细胞定位载体导入烟草叶片进行亚细胞定位。结果表明:MsNAC053基因编码区全长903 bp,编码300个氨基酸,其蛋白相对分子量为34.62 kDa,脂溶指数为73.82,理论等电点为7.05,平均亲水性为-0.604,不稳定系数为47.28,为不稳定的亲水性蛋白,不具备跨膜结构,具有响应冷胁迫及脱落酸等的顺式作用元件。亚细胞定位结果显示其定位于细胞核中,系统进化树和氨基酸序列分析表明MsNAC053与蒺藜苜蓿、长柔毛野豌豆等豆科植物亲缘关系较近。qRT-PCR结果表明,MsNAC053基因表达具有组织特异性,在幼叶中表达量最高,在子叶中表达量最低;干旱、盐及脱落酸(ABA)处理均能诱导MsNAC053基因的表达,表明MsNAC053基因参与紫花苜蓿应对干旱、盐胁迫响应。本研究为紫花苜蓿抗逆分子育种提供了理论依据及候选基因。
The NAC (NAM, ATAF1/2, CUC1/2) transcription factors are plant-specific regulators that play critical roles in plant growth and development, hormone signaling, and stress responses. Alfalfa (Medicago sativa), one of the most important leguminous forage crops worldwide, is renowned for its high nutritional value and quality. To investigate the function of the MsNAC053 gene in alfalfa, specific primers were designed using SnapGene and NCBI to clone MsNAC053 through polymerase chain reaction (PCR) technology. The physicochemical properties, secondary structure, and subcellular localization of the protein were analyzed through bioinformatics tools. And the tissue-specific expression patterns of MsNAC053 and its responses to abiotic stresses were analyzed through quantitative real-time PCR (qRT-PCR). The subcellular localization analysis were conducted by introducing vector into tobacco (Nicotianatabacum) leaves via Agrobacterium-mediated transformation. The results showed that the coding region of MsNAC053 was 903 bp, encoding 300 amino acids, with a predicted molecular weight of 34.62 kDa, an aliphatic index of 73.82, a theoretical isoelectric point (pI) of 7.05, a grand average hydropathicity of -0.604, and an instability coefficient of 47.28, categorizing it as an unstable hydrophilic protein without transmembrane regions. Cis-acting elements responsive to low-temperature (LTR) and abscisic acid responsiveness (ABRE) were identified. Subcellular localization confirmed that MsNAC053 was localized in nucleus. Phylogenetic and amino acid sequence analyses revealed close evolutionary relationships between MsNAC053 and other NAC proteins from leguminous species such as Medicago truncatula and Vicia villosa. qRT-PCR demonstrated tissue-specific expression of MsNAC053, with the highest expression level in young leaves and the lowest expression level in cotyledons. Drought, salt, and ABA treatments significantly upregulated the expression level of MsNAC053, indicating that it plays a role in response to drought and salt stresses. In summary, the results of this study provides both theoretical insights and a candidate gene for molecular breeding of stress-resistant alfalfa varieties.
紫花苜蓿 / NAC转录因子 / 基因克隆 / 表达分析 / 非生物胁迫
alfalfa / NAC transcription factor / gene cloning / expression analysis / abiotic stress
| [1] |
Wang S P, Liu J, Hong J, et al. Cloning and function analysis of MsPPR1 in alfalfa under drought stress. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
| [2] |
王少鹏, 刘佳, 洪军, 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析. 草业学报, 2023, 32(7): 49-60. |
| [3] |
Wang Y, Wang J, Li S X. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
| [4] |
王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析. 草业学报, 2023, 32(3): 107-117. |
| [5] |
Liu G S, Li H L, Grierson D, et al. NAC transcription factor family regulation of fruit ripening and quality: a review.Cells, 2022, 11(3): 525. |
| [6] |
Ren Y, Huang Z Q, Jiang H, et al. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. JournalofExperimentalBotany, 2021, 72(8): 2947-2964. |
| [7] |
Martín-Pizarro C, Vallarino J G, Osorio S, et al. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell, 2021, 33(5): 1574-1593. |
| [8] |
Han D, Du M, Zhou Z, et al. Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. International Journal of Molecular Sciences, 2020, 21(4): 1198. |
| [9] |
Qian Y X, Xi Y, Xia L X, et al. Membrane-bound transcription factor ZmNAC074 positively regulates abiotic stress tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 2023, 24(22): 16157. |
| [10] |
Zhang M J, Hou X T, Yang H, et al. The NAC gene family in the halophyte Limonium bicolor: identification, expression analysis, and regulation of abiotic stress tolerance. Plant Physiology and Biochemistry, 2024, 208: 108462. |
| [11] |
Ling L, Song L L, Wang Y J, et al. Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula. Physiology and Molecular Biology of Plants, 2017, 23(2): 343-356. |
| [12] |
Li M, Chen R, Jiang Q Y, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology, 2021, 105(3): 333-345. |
| [13] |
Li T T, Fang K, Tie Y, et al. NAC transcription factor ATAF1 negatively modulates the PIF-regulated hypocotyl elongation under a short-day photoperiod. Plant, Cell & Environment, 2024, 47(8): 3253-3265. |
| [14] |
Shen J B, Lv B, Luo L Q, et al. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Scientific Reports, 2017, 7(1): 40641. |
| [15] |
Wang J F, Lian W R, Cao Y Y, et al. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Scientific Reports, 2018, 8(1): 13349. |
| [16] |
Zhang G Y, Huang S Q, Zhang C, et al. Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute (Corchorus capsularis L.). Protoplasma, 2020, 258(2): 337-345. |
| [17] |
Li S Y. Study on genetic transformation of MsNAC47 gene to alfalfa. Harbin: Harbin Normal University, 2023. |
| [18] |
李思宇. MsNAC47基因对紫花苜蓿的遗传转化研究. 哈尔滨: 哈尔滨师范大学, 2023. |
| [19] |
Zou W P, Zhai J X, Li D N, et al. Identification of alfalfa NAC gene family and analysis of their expression patterns under abiotic stress. Acta Agrestia Sinica, 2024, 32(8): 2440-2458. |
| [20] |
邹苇鹏, 翟佳兴, 李迪娜, 紫花苜蓿NAC基因家族鉴定及在非生物胁迫下的表达模式分析. 草地学报, 2024, 32(8): 2440-2458. |
| [21] |
Guerin C, Roche J, Allard V, et al. Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLoS One, 2019, 14(3): e0213390. |
| [22] |
Diao W P, Snyder J, Wang S B, et al. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, cis-elements in the promoter, and interaction network. International Journal of Molecular Sciences, 2018, 19(4): 1028. |
| [23] |
Satheesh V, Jagannadham P T K, Chidambaranathan P, et al. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea [Cajanus cajan (L.) Millsp.]. Molecular Biology Reports, 2014, 41(12): 7763-7773. |
| [24] |
Li W H, Zeng Y L, Yin F L, et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress. Scientific Reports, 2021, 11(1): 19865. |
| [25] |
Zhou L, Shi K, Cui X R, et al. Overexpression of MsNAC51 from alfalfa confers drought tolerance in tobacco. Environmental and Experimental Botany, 2023, 205: 105143. |
| [26] |
Shang X G, Yu Y J, Zhu L J, et al. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis.Plant Science, 2020, 296: 110498. |
| [27] |
Yang Y L, Zhang H X, Wang S S, et al. Cloning, bioinformatics analysis of transcription factor NAC62 in industrial hemp (Cannabis sativa) and its response analysis to drought stress. Journal of Agricultural Biotechnology, 2024, 32(1): 107-114. |
| [28] |
杨宇蕾, 张涵雪, 王珊珊, 转录因子NAC62在工业大麻中的克隆、生信分析及其干旱胁迫响应分析. 农业生物技术学报, 2024, 32(1): 107-114. |
| [29] |
Sun L, Liu L P, Wang Y Z, et al. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. Planta, 2020, 252(6): 95. |
| [30] |
Kong J Y, Yang N, Luo W, et al. Identification of NAC transcription factor genes CsNAC79 and CsNAC9 in tea plant and their response to different abiotic stresses. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(4): 572-581. |
| [31] |
孔洁玙, 杨妮, 罗微, 茶树NAC转录因子基因CsNAC79和CsNAC9鉴定及其对非生物胁迫的响应. 西北植物学报, 2024, 44(4): 572-581. |
| [32] |
Cao L H, Wang J Y, Ren S J, et al. Genome-wide identification of the NAC family in Hemerocallis citrina and functional analysis of HcNAC35 in response to abiotic stress in watermelon. Frontiers in Plant Science, 2024, 15: 1474589. |
| [33] |
Yong Y B, Zhang Y, Lyu Y M. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 2019, 20(13): 3225. |
| [34] |
Ao C W, Xiang G J, Wu Y F, et al. OsNAC15 regulates drought and salt tolerance in rice. Physiology and Molecular Biology of Plants, 2024, 30(11): 1909-1919. |
| [35] |
Xu Z. Cloning and characteristic analysis of MfNAC63 gene in Medicago falcata. Hohhot: Inner Mongolia University, 2019. |
| [36] |
徐哲. 黄花苜蓿MfNAC63基因的克隆及特性分析. 呼和浩特: 内蒙古大学, 2019. |
国家自然科学基金(32071872)
国家自然科学基金(31402131)
山西省中央引导地方科技发展资金项目(YDZJSX2022B006)
山西重点研发计划课题(202102140601006-3)
山西农业大学博士科研启动专项(2021BQ01)
/
| 〈 |
|
〉 |