紫花苜蓿MsMYB86基因克隆及其对非生物胁迫的响应分析
鲜燃 , 邓雨 , 付秋月 , 蒋晶霞 , 陶佳丽 , 许涛 , 朱慧森 , 岑慧芳
草业学报 ›› 2025, Vol. 34 ›› Issue (09) : 162 -172.
紫花苜蓿MsMYB86基因克隆及其对非生物胁迫的响应分析
Cloning of alfalfa MsMYB86 and analysis of its transcriptional response to abiotic stress
紫花苜蓿作为营养价值高、适应性强的优质饲草,在草业生产中占据重要地位。MYB家族是植物中最大的转录因子家族之一,在植物生长发育、次生代谢以及对生物和非生物胁迫的响应中发挥关键作用。本试验以紫花苜蓿为研究对象,通过对MsMYB86基因进行克隆,利用ExPASy、Prabi以及SMART等在线网站和软件对MsMYB86基因编码蛋白的序列特性进行分析,包括相对分子质量、蛋白二级结构预测以及识别蛋白结合域等。采用RT-qPCR技术对MsMYB86基因的组织表达特异性及对不同非生物胁迫的响应情况进行分析。结果显示:MsMYB86基因全长为1104 bp,编码367个氨基酸。该蛋白质的相对分子质量为41.27 kDa,理论等电点(pI)为7.10,脂肪指数高达65.61,显示出明显的亲水性。MsMYB86蛋白质包含两个高度保守的SANT-MYB结构域,且主要定位于细胞核内。MsMYB86基因表达存在组织特异性,且在老茎中的表达水平显著高于其他组织。干旱、盐胁迫以及脱落酸处理下MsMYB86基因均表现出显著的响应性,推测其可能在调控紫花苜蓿对非生物胁迫的响应中发挥作用。研究结果可为阐释MsMYB86基因调控紫花苜蓿非生物胁迫响应机制提供理论基础。
Alfalfa (Medicago sativa) occupies a prominent position in forage production as a high-quality forage with excellent nutritional value and wide adaptability. The MYB family is one of the largest families of transcription factors in plants, and its members play crucial roles in plant growth and development, secondary metabolism, and responses to biotic and abiotic stresses. In this study, MsMYB86 was cloned from alfalfa and its putative encoded protein was analyzed using online websites and software such as ExPASy, Prabi, and SMART. These analyses predicted the relative molecular mass, protein secondary structure, and protein-binding domains of the putative MYB86 protein. Tissue-specific transcript profiles of MsMYB86 and its transcriptional response to different abiotic stresses were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). The results showed that the full-length MsMYB86 coding sequence was 1104 bp long, encoding a polypeptide of 367 amino acids. The protein was predicted to have a relative molecular mass of 41.27 kDa, an isoelectric point of 7.10, and a high lipid index of 65.61, indicating that it is a hydrophilic protein. The MsMYB86 protein was predicted to contain two highly conserved SANT-MYB structural domains and to localize in the nucleus. We detected tissue-specific transcript profiles of MsMYB86, and its transcript levels were significantly higher in mature stems than in other tissues. Transcription of the MsMYB86 gene was responsive to drought, salt stress, and abscisic acid treatment, suggesting that it plays a role in the alfalfa response to abiotic stresses. The results of this study provide a theoretical basis for further studies on the role of MsMYB86 in regulating the abiotic stress response of alfalfa.
alfalfa / MsMYB86 / abiotic stress / expression pattern
| [1] |
Pabo C O, Sauer R T. Transcription factors: structural families and principles of DNA recognition. Annual Review of Biochemistry, 1992, 61(1): 1053-1095. |
| [2] |
Xu W J, Huang Y H, Han R R, et al. Systematic analysis of MYB transcription factors related to the geniposide biosynthesis in Gardenia jasminoides Ellis based on whole genome. Acta Pharmaceutica Sinica, 2023, 58(8): 2522-2531. |
| [3] |
许文杰, 黄远浩, 韩蓉蓉, 基于全基因组的栀子苷生物合成相关MYB转录因子系统分析. 药学学报, 2023, 58(8): 2522-2531. |
| [4] |
Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 2003, 15(1): 63-78. |
| [5] |
Lv K, Wei H, Liu G F. A R2R3-MYB transcription factor gene, BpMYB123, regulates BpLEA14 to improve drought tolerance in Betula platyphylla. Frontiers in Plant Science, 2021, 22(12): 1-9. |
| [6] |
Chen N, Zhan W W, Shao Q, et al. Cloning, expression, and functional analysis of the MYB transcription factor SlMYB86-like in tomato. Plants, 2024, 13(4): 488. |
| [7] |
Jiang S H, Sun Q G, Zhang T L, et al. MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit. Journal of Plant Physiology, 2021, 257(12): 153353. |
| [8] |
Zhang Y, Hu Y F, Wang S M, et al. Bioinformatic analysis of MYB tanscription factors involved in catechins biosynthesis in tea plant (Camellia sinensis). Journal of Tea Science, 2018, 38(2): 162-173. |
| [9] |
张玥, 胡雲飞, 王树茂, 茶树儿茶素合成相关MYB转录因子生物信息学分析. 茶叶科学, 2018, 38(2): 162-173. |
| [10] |
Chen C J, Bao M F, Wang W H, et al. Current situation and prospects for drought-resistance breeding in Medicago sativa. Acta Prataculturae Sinica, 2025, 34(3): 204-223. |
| [11] |
陈彩锦, 包明芳, 王文虎, 紫花苜蓿抗旱育种研究现状及展望. 草业学报, 2025, 34(3): 204-223. |
| [12] |
Shen C, Du H, Chen Z, et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. The Molecular Plant, 2020, 13(9): 1250-1261. |
| [13] |
Cen H F, Huang J Q, Shen W H, et al. Cloning of the MsUGT87A1 gene inalfalfa and analysis of its expression in the response to abiotic stress. Acta Agrestia Sinica, 2023, 31(6): 1682-1692. |
| [14] |
岑慧芳, 黄洁琼, 申王晖, 紫花苜蓿MsUGT87A1基因克隆及其对非生物胁迫的响应分析. 草地学报, 2023, 31(6): 1682-1692. |
| [15] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods, 2001, 25(4): 402-408. |
| [16] |
Kumar S M, Babu R P, Rao V K, et al. Organization and classification of cytochrome P450 genes in castor (Ricinus communis L.).Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2014, 84(1): 131-143. |
| [17] |
Feller A, Machemer K, Braun E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal for Cell & Molecular Biology, 2011, 66(1): 94-116. |
| [18] |
Payne C T, Zhang F, Lloyd A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 2000, 156(3): 1349-1362. |
| [19] |
Shan T L, Hong Y T, Du L P, et al. Development and characterization of TaMYB86-overexpressing transgenic wheat lines with resistance to common root rot. Acta Agronomica Sinica, 2016, 42(10): 1429-1436. |
| [20] |
单天雷, 洪彦涛, 杜丽璞, 抗根腐病的TaMYB86过表达转基因小麦的创制与分子功能鉴定. 作物学报, 2016, 42(10): 1429-1436. |
| [21] |
Li L Z, Li S H, Ge H Y, et al. A light-responsive transcription factor SmMYB35 enhances anthocyanin biosynthesis in eggplant (Solanum melongena L.). Planta, 2021, 255(1): 12. |
| [22] |
Chen Z H. Genetic regulatory network of MAPK-MYB86-CAD2 controls the leaf morphogenesis in rice. Beijing: Chinese Academy of Agricultural Sciences, 2022. |
| [23] |
陈振华. 控制水稻叶片形态MAPK-MYB86-CAD2遗传调控网络解析. 北京: 中国农业科学院, 2022. |
| [24] |
Zhou P N, Li Y, Pu T Z, et al. Cloning and bioinformatics analysis of the β-1,4-xylosyltransferase IRX9 gene from Dendrobium huoshanense. Chinese Traditional and Herbal Drugs, 2019, 50(5): 1212-1219. |
| [25] |
周佩娜, 李阳, 蒲天珍, 霍山石斛β-1,4-木糖基转移酶(IRX9)基因克隆及生物信息学分析. 中草药, 2019, 50(5): 1212-1219. |
| [26] |
Jiang R P, Zhao C H, Li W J, et al. Codon bias of IPI gene in leguminous plants. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1114-1123. |
| [27] |
蒋瑞平, 赵辰晖, 李文杰, 豆科植物IPI基因密码子偏好性. 浙江农业学报, 2022, 34(6): 1114-1123. |
| [28] |
Yang G F, Su K L, Zhao Y R, et al. Analysis of codon usage in the chloroplast genome of Medicago truncatula. Acta Prataculturae Sinica, 2015, 24(12): 171-179. |
| [29] |
杨国锋, 苏昆龙, 赵怡然, 蒺藜苜蓿叶绿体密码子偏好性分析. 草业学报, 2015, 24(12): 171-179. |
| [30] |
Li P H, Xia E H, Fu J M, et al. Diverse roles of MYB transcription factors in regulating secondary metabolite biosynthesis, shoot development, and stress responses in tea plants (Camellia sinensis). The Plant Journal, 2022(4): 110. |
| [31] |
Wang S, Jia X Q, He L, et al. Research progress on the response mechanisms of crops to drought stress and regulatory measures to improve crop drought resistance. Chinese Agricultural Science Bulletin, 2022, 38(29): 31-44. |
| [32] |
王硕, 贾潇倩, 何璐, 作物对干旱胁迫的响应机制及提高作物抗旱能力的调控措施研究进展. 中国农学通报, 2022, 38(29): 31-44. |
| [33] |
Li R X, Sun R J, Wang T C, et al. Research progress on identification and evaluation methods, and mechanism of drought resistance in plants. Biotechnology Bulletin, 2017, 33(7): 40-48. |
| [34] |
李瑞雪, 孙任洁, 汪泰初, 植物抗旱性鉴定评价方法及抗旱机制研究进展. 生物技术通报, 2017, 33(7): 40-48. |
国家自然科学基金(32071872)
山西省中央引导地方科技发展资金项目(YDZJSX2022B006)
山西重点研发计划课题(202102140601006-3)
山西省基础研究计划(202303021221101)
山西省来晋科研奖励(SXBYKY2022118)
优秀博士启动项目(2021BQ01)
优秀博士启动项目(2023BQ03)
/
| 〈 |
|
〉 |