武功山山地草甸植物群落特征和生态位
向泽宇 , 唐忠炳 , 彭昕桁 , 杨晓龙 , 杨创明 , 邱相东 , 陈春发 , 彭焱松 , 周赛霞
草业学报 ›› 2025, Vol. 34 ›› Issue (09) : 12 -25.
武功山山地草甸植物群落特征和生态位
Plant community characteristics and niches in mountain meadows of Wugong Mountain
武功山草甸属于华东南地区少有的典型天然草地,是该区域山地生态系统类型多样性的重要组成部分。然而,目前对武功山草甸整体的植物群落组成和结构特征仍知之甚少。因此,非常有必要对武功山草甸植物群落多样性、生态位、结构质量及保护管理开展调查研究。本研究从林草交错带到山顶,在整个武功山草甸范围内沿海拔梯度设置了3个海拔样带(E1:1380~1580 m,E2:1580~1780 m,E3:1780~1918 m),每个样带设10个调查样方进行群落及地形调查,包括物种组成、高度、盖度以及样方海拔经纬度和坡度坡向,评估草甸植物群落的多样性(α和β多样性)、生态位及种间竞争的变化。研究结果发现随海拔增加草甸群落结构逐渐发生变化,其中,草甸植物群落α多样性随海拔的增加而显著增加,而群落变异性(β多样性)显著降低,且阴坡草甸植物群落具有更高的物种丰富度。草甸群落种间竞争分析表明优质禾草芒和野古草的生态位宽度和生态位重叠系数占绝对优势,是整个草甸最具代表性的优势物种;同时草甸群落环境还为3种兰科植物的生存提供了庇护场所,而入侵植物小蓬草和鬼针草在草甸群落中也较常见。对武功山山地草甸植物群落特征的总体研究表明:草甸群落结构整体质量优良,但提示草甸群落质量面临一定程度的退化风险,今后要加强综合保护和管理,特别是1800 m至最高峰(金顶)的区段,是草甸植物群落的地上生物量最大、物种多样性最丰富、群落最稳定的区域,是未来草甸保护的重点。
The meadows of Wugong Mountain represent a rare typical natural grassland in southeast China, and constitute a significant part of the diversity of mountain ecosystem types in this area. However, our understanding of the overall composition and structure of the plant community in meadows on Wugong Mountain remains limited. Therefore, for appropriate conservation and management, it is important to explore the diversity, niches, and structural quality of the plant community in meadows on Wugong Mountain. Three transects (E1: 1380-1580 m, E2: 1580-1780 m, E3: 1780-1918 m) were established along an elevational gradient across the whole range of meadows from the forest-grass ecotone to the top of the mountain. Ten survey plots were established along each transect, and aspects of the community and terrain were recorded (species composition, height, and coverage, as well as the altitude, longitude, latitude, slope, and aspect of each plot). The changes in diversity (α, β), species’ niches, and interspecific competition in the meadow plant community along the elevational gradient were evaluated. The results showed that the meadow community structure varied gradually with the increase in elevation. The α diversity increased significantly with increasing elevation, whereas the community variability (β diversity) decreased significantly. The meadow plant community on shady slopes showed higher species richness. Analysis of interspecific competition in the meadow community revealed the wide niche and large overlap coefficient of the high-quality grasses Miscanthus sinensis and Arundinella hirta. These two species showed an absolute advantage and were the most representative dominant species across the meadows. The meadow community environment also provided a refuge for the survival of three orchid species (Ponerorchis gracilis, Platanthera minor, and Platanthera ussuriensis), while invasive plants such as Erigeron canadensis and Bidens pilosa were also relatively common. The results of this study show that the overall quality and structure of the plant community in meadows on Wugong Mountain are excellent, as well as, the meadow community is at risk of degradation. We recommend that comprehensive protection and management of these mountain meadows should be strengthened, especially in the section from 1800 m to the highest peak, Jinding. This area should be the key focus for meadow protection because it has the largest aboveground biomass of the meadow plant community, the richest species diversity, and the most stable community.
Wugong Mountain / mountain meadow / diversity / interspecific competition / niche
| [1] |
McIlroy S K, Allen-Diaz B H. Plant community distribution along water table and grazing gradients in montane meadows of the Sierra Nevada Range (California, USA). Wetlands Ecology and Management, 2012, 20(4): 287-296. |
| [2] |
Li W, Cao W X, Wang J L, et al. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau. Ecological Engineering, 2017, 98: 123-133. |
| [3] |
Saggar S, Jha N, Deslippe J, et al. Denitrification and N2O:N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Science of the Total Environment, 2013, 465: 173-195. |
| [4] |
Xiu L N, Feng Q S, Liang T G, et al. Spatial and temporal distribution of grassland and human occupancy condition in China from 2001 to 2009. Pratacultural Science, 2014, 31(1): 66-74. |
| [5] |
修丽娜, 冯琦胜, 梁天刚, 2001-2009年中国草地面积动态与人类活动的关系. 草业科学, 2014, 31(1): 66-74. |
| [6] |
Ren J Z, Zhang Y J. Grassland resources in the south of China and its development strategy. Journal of China University of Metrology, 2002, 13(3): 11-17. |
| [7] |
任继周, 张英俊. 中国南方草地资源及其发展战略. 中国计量学院学报, 2002, 13(3): 11-17. |
| [8] |
Zhang X L, Zhang Y, Niu D K, et al. Spatial-temporal dynamics of upland meadow coverage on Wugong Mountain based on TM NDVI. Acta Ecologica Sinica, 2018, 38(7): 2414-2424. |
| [9] |
张学玲, 张莹, 牛德奎, 基于TM NDVI的武功山山地草甸植被覆盖度时空变化研究. 生态学报, 2018, 38(7): 2414-2424. |
| [10] |
Deng B L, Li Z Z, Zhang L, et al. Increases in soil CO2 and N2O emissions with warming depend on plant species in restored alpine meadows of Wugong Mountain, China. Journal of Soils and Sediments, 2016, 16(3): 777-784. |
| [11] |
Deng B L, Zheng L Y, Ma Y C, et al. Effects of mixing biochar on soil N2O, CO2, and CH4 emissions after prescribed fire in alpine meadows of Wugong Mountain, China. Journal of Soils and Sediments, 2020, 20(3): 3062-3072. |
| [12] |
Li Z, Zhang L, Chen J, et al. Response of soil sulfur availability to elevation and degradation in the Wugong Mountain meadow, China. Plant Soil and Environment, 2017, 63(6): 250-256. |
| [13] |
Li Z, Siemann E, Deng B L, et al. Soil microbial community responses to soil chemistry modifications in alpine meadows following human trampling. Catena, 2020, 194: 104717. |
| [14] |
Jiang L B, Zhang L, Deng B L, et al. Alpine meadow restorations by non-dominant species increased soil nitrogen transformation rates but decreased their sensitivity to warming. Journal of Soils and Sediments, 2017, 17(9): 2329-2337. |
| [15] |
Rana S, Cheng X N, Wu Y F, et al. Evaluation of soil and water conservation function in the Wugong mountain meadow based on the comprehensive index method. Heliyon, 2022, 8(12): e11867. |
| [16] |
Rana S, Xu Z H, Jemim R S, et al. Soil quality assessment in tourism-disturbed subtropical mountain meadow areas of Wugong Mountain, central Southeast China. Life, 2022, 12(8): 1136. |
| [17] |
Chardon N I, Rixen C, Wipf S, et al. Human trampling disturbance exerts different ecological effects at contrasting elevational range limits. Journal of Applied Ecology, 2019, 56(6): 1389-1399. |
| [18] |
Gao Y G, Li Y H, Xu H Q. Assessing ecological quality based on remote sensing images in Wugong mountain. Earth and Space Science, 2022, 9(3): e2021EA001918. |
| [19] |
Zhang J T. Quantitative ecology (The third edition). Beijing: Science Press, 2018. |
| [20] |
张金屯. 数量生态学(第三版). 北京: 科学出版社, 2018. |
| [21] |
Baselga A. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 2010, 19(1): 134-143. |
| [22] |
Zhang Q P, Wang J, Lv F. Study of spatial distribution of alpine meadow in Hezuo City. Chinese Journal of Grassland, 2021, 43(5): 90-96. |
| [23] |
张起鹏, 王建, 吕飞. 合作市高寒草甸空间分布规律研究. 中国草地学报, 2021, 43(5): 90-96. |
| [24] |
Zhang C S, Xie G D, Bao W K, et al. Effects of topographic factors on the plant species richness and distribution pattern of alpine meadow in source region of Lancang River, Southwest China. Chinese Journal of Ecology, 2012, 31(11): 2767-2774. |
| [25] |
张昌顺, 谢高地, 包维楷, 地形对澜沧江源区高寒草甸植物丰富度及其分布格局的影响. 生态学杂志, 2012, 31(11): 2767-2774. |
| [26] |
Dong S K, Sha W, Su X K, et al. The impacts of geographic, soil and climatic factors on plant diversity, biomass and their relationships of the alpine dry ecosystems: Cases from the Aerjin Mountain Nature Reserve, China. Ecological Engineering, 2019, 127: 170-177. |
| [27] |
Zhou Y D, Ochola A C, Njogu A W, et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecology and Evolution, 2019, 9(8): 4495-4503. |
| [28] |
Wang X, Zhu J L, Peng S T, et al. Patterns of grassland community composition and structure along an elevational gradient on the Qinghai-Tibet Plateau. Journal of Plant Ecology, 2022, 15(4): 808-817. |
| [29] |
Dorji T, Moe S R, Klein J A, et al. Plant species richness, evenness, and composition along environmental gradients in an alpine meadow grazing ecosystem in central Tibet, China. Arctic Antarctic and Alpine Research, 2014, 46(2): 308-326. |
| [30] |
Gong X, Huo X R, Li W, et al. Vegetation community characteristics and spatial differentiation in mountain grassland in Luoshan, Ningxia. Acta Prataculturae Sinica, 2025, 34(2): 1-15. |
| [31] |
龚昕, 霍新茹, 李雯, 宁夏罗山山地草原植被群落特征及其空间分异. 草业学报, 2025, 34(2): 1-15. |
| [32] |
Zhang X, Ye M, Chen W L, et al. Influence of topography on species diversity of grassland plant communities in the Altai Mountains. Chinese Journal of Grassland, 2024, 46(7): 57-71. |
| [33] |
张西, 叶茂, 陈维龙, 地形对阿尔泰山草地植物群落物种多样性的影响. 中国草地学报, 2024, 46(7): 57-71. |
| [34] |
Niu Y J, Zhou J W, Yang S W, et al. Quantitative apportionment of slope aspect and altitude to soil moisture and temperature and plant distribution on alpine meadow. Chinese Journal of Applied Ecology, 2017, 28(5): 1489-1497. |
| [35] |
牛钰杰, 周建伟, 杨思维, 坡向和海拔对高寒草甸山体土壤水热和植物分布格局的定量分解. 应用生态学报, 2017, 28(5): 1489-1497. |
| [36] |
Wang W H, Wang S L, Liang G L, et al. Effects of slope categories of differing aspect and position on plant community diversity in alpine shrubland in the Qilian Mountains. Acta Prataculturae Sinica, 2025, 34(1): 17-28. |
| [37] |
王文虎, 王世林, 梁国玲, 坡向和坡位对祁连山高寒灌丛植物群落多样性的影响. 草业学报, 2025, 34(1): 17-28. |
| [38] |
Ding S, Ouyang J, Lv D, et al. Niche characteristics of dominant species populations in Castanopsis fargesii forest in Jinggang mountain national nature reserve. Journal of Central South University of Forestry & Technology, 2014, 34(7): 99-103. |
| [39] |
丁松, 欧阳杰, 吕丹, 井冈山国家自然保护区栲树林优势种群生态位特征. 中南林业科技大学学报, 2014, 34(7): 99-103. |
| [40] |
Zhang J, Caiwendaiji, Suonancairen, et al. The correlation and niche of survival community of in Maduo County, Qinghai Province. Pratacultural Science, 2019, 36(11): 2752-2765. |
| [41] |
张静, 才文代吉, 索南才仁, 青海玛多梭罗以礼草生存群落种间关联及生态位. 草业科学, 2019, 36(11): 2752-2765. |
| [42] |
Xiang Z Y, Bhatt A, Tang Z B, et al. Disturbance of plateau zokor-made mound stimulates plant community regeneration in the Qinghai-Tibetan Plateau, China. Journal of Arid Land, 2021, 13(10): 1054-1070. |
| [43] |
Yang M Z. Preliminary study on the distribution and classification of grassland in Fujian Province. Grassland of China, 1983(2): 12-17. |
| [44] |
杨睦忠. 福建省草地分布规律及类型划分的初步探讨. 中国草原, 1983(2): 12-17. |
| [45] |
Yang B Z, Kong D Z. The quantitative classification, ordination and rational utilization of grassland vegetation types of the Nanling Mountains, Hunan Province. Journal of Natural Resources, 1991, 6(2): 153-169. |
| [46] |
杨宝珍, 孔德珍. 湖南南岭草地植被类型的数量分类、排序及其合理利用. 自然资源学报, 1991, 6(2): 153-169. |
| [47] |
Wang S Z, Xie F. The grassland resources and their utilization in south China. Acta Agrestia Sinica, 1991, 1(1): 1-9. |
| [48] |
王素珍, 谢帆. 我国南方草地资源及其利用. 草地学报, 1991, 1(1): 1-9. |
| [49] |
Song J Z, Sun Y, Ji X, et al. Reproductive allocation characteristics of Agrostis clavata populations in Changbai Mountain area. Jiangsu Agricultural Sciences, 2014, 42(8): 178-180. |
| [50] |
宋金枝, 孙颖, 季旭, 长白山区华北剪股颖种群生殖分配特征. 江苏农业科学, 2014, 42(8): 178-180. |
| [51] |
Liu X F. Cultivation technology and application of Oplismenus undulatifolius. Forest By-Product and Speciality in China, 2017(3): 34-36. |
| [52] |
刘香芬. 求米草栽培技术及应用. 中国林副特产, 2017(3): 34-36. |
| [53] |
Kang R Q, Bai X M, Ran F, et al. Community characteristics and soil nutrient status of 9 Carex L. plants in central and eastern Gansu Province. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(2): 305-315. |
| [54] |
康瑞卿, 白小明, 冉福, 甘肃中东部地区9种薹草属植物分布区群落特征和土壤养分状况. 西北植物学报, 2023, 43(2): 305-315. |
| [55] |
Lan L Y, Ma L L, Guo X M, et al. Status of grassland resources and above-ground net primary productivity in Jiangxi Province. South China Forestry Science, 2022, 50(3): 54-60. |
| [56] |
兰龙焱, 马丽丽, 郭晓敏, 江西省草地资源现状及地上净初级生产力研究. 南方林业科学, 2022, 50(3): 54-60. |
| [57] |
Gu F T. The classification system of the grassland vegetation of Shandong Province. Grassland of China, 1990(3): 19-25. |
| [58] |
谷奉天. 山东草地植被的分类系统. 中国草地, 1990(3): 19-25. |
| [59] |
Guo X, Li L, Wang C Z, et al. Studies on Henan Province rangeland resource regional planning. Acta Agrestia Sinica, 2019, 27(3): 719-727. |
| [60] |
郭孝, 李黎, 王成章, 河南省天然草地资源区划的研究. 草地学报, 2019, 27(3): 719-727. |
| [61] |
Liao Y F, Huang X S. Community characteristics and floristic composition of montane shrub meadow in Lianhua Mountain, Huidong, Guangdong. Anhui Agricultural Science Bulletin, 2022, 28(7): 31-33. |
| [62] |
廖远芳, 黄潇洒. 广东惠东莲花山山地灌丛草甸区系组成及群落特征. 安徽农学通报, 2022, 28(7): 31-33. |
| [63] |
Guan H L, Fan J W, Li Y Z, et al. Estimation of carbon distribution and storage of natural grassland in Hainan Island. Ecology and Environmental Sciences, 2019, 28(6): 1092-1099. |
| [64] |
官惠玲, 樊江文, 李愈哲, 海南岛天然草地有机碳分布格局及碳储量估算. 生态环境学报, 2019, 28(6): 1092-1099. |
| [65] |
Qiao G L, Jin X B, Gu Z M, et al. Carrying capacity of high-altitude grassland in warm seasons in the middle section of Tianshan Mountain from 2000 to 2018. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 253-261. |
| [66] |
乔郭亮, 金晓斌, 顾铮鸣, 2000-2018年天山中段高海拔草地暖季承载力. 农业工程学报, 2021, 37(22): 253-261. |
| [67] |
Miao C L, Fu S, Liu J, et al. Aboveground biomass analysis of an alpine meadow based on unmanned aerial vehicle hyperspectral images in the Haibei pilot area. Pratacultural Science, 2022, 39(10): 1992-2004. |
| [68] |
苗春丽, 伏帅, 刘洁, 基于UAV成像高光谱图像的高寒草甸地上生物量——以海北试验区为例. 草业科学, 2022, 39(10): 1992-2004. |
| [69] |
Guo Y H, Pu X J, Pu X P, et al. Change tendency of the aboveground biomass and nutrition quality in the alpine pastoral area of Qinghai Tibet. Acta Agrestia Sinica, 2021, 29(4): 734-742. |
| [70] |
郭艳红, 蒲小剑, 蒲小朋, 青藏高寒牧区天然草地地上生物量和营养品质的变化规律. 草地学报, 2021, 29(4): 734-742. |
| [71] |
Ain N U, Haider F U, Fatima M, et al. Genetic determinants of biomass in C4 crops: molecular and agronomic approaches to increase biomass for biofuels. Frontiers in Plant Science, 2022, 13: 839588. |
| [72] |
Ou Y X, Zhang Y R, Li Y L. A review on carbon dynamics and budget of biomass energy species of Miscanthus spp. Ecology and Environmental Sciences, 2013, 22(9): 1633-1638. |
| [73] |
欧阳旭, 张亚茹, 李跃林. 基于生物质能的芒属(Miscanthus)植物碳动态和收支研究进展. 生态环境学报, 2013, 22(9): 1633-1638. |
| [74] |
Zhang Z J, Yan Y J, Tian Y, et al. Distribution and conservation of orchid species richness in China. Biological Conservation, 2015, 181: 64-72. |
| [75] |
Hinsley A, de Boer H J, Fay M F, et al. A review of the trade in orchids and its implications for conservation. Botanical Journal of the Linnean Society, 2018, 186(4): 435-455. |
| [76] |
Jin X H, Xiang X G, Chen B. Biodiversity of orchids in remnant native forests in Nujiang Valley, Yunnan Province, China. Biodiversity Science, 2011, 19(1): 120-123. |
| [77] |
金效华, 向小果, 陈彬. 怒江河谷低海拔地区残存原生植被中兰科植物多样性. 生物多样性, 2011, 19(1): 120-123. |
| [78] |
Chen W. The biological zero and accumulated temperature for seed germination of six Asteraceae species in eastern Guangdong. Journal of Northwest Normal University (Natural Science), 2016, 52(4): 93-98. |
| [79] |
陈文. 粤东6种菊科植物种子萌发的生物学零度和积温. 西北师范大学学报(自然科学版), 2016, 52(4): 93-98. |
| [80] |
Yan X L, Liu Q R, Shou H Y, et al. The categorization and analysis on the geographic distribution patterns of Chinese alien invasive plants. Biodiversity Science, 2014, 22(5): 667-676. |
| [81] |
闫小玲, 刘全儒, 寿海洋, 中国外来入侵植物的等级划分与地理分布格局分析. 生物多样性, 2014, 22(5): 667-676. |
2021年、2022年中央财政林业改革发展资金重点野生动植物保护项目和江西省教育厅科学技术研究青年项目(190781)
/
| 〈 |
|
〉 |