青贮饲料桑替代豆粕对肉羊血液指标、瘤胃发酵及瘤胃菌群的影响
操鹏飞 , 汪水平 , 黄桥深 , 周世龙 , 罗专 , 任莹 , 刘勇 , 李铁军 , 汤少勋
草业学报 ›› 2025, Vol. 34 ›› Issue (10) : 213 -228.
青贮饲料桑替代豆粕对肉羊血液指标、瘤胃发酵及瘤胃菌群的影响
Effects of substituting mulberry silage for soybean meal on blood indexes, rumen fermentation, and rumen bacteria of goats
本试验旨在探究两种青贮饲料桑替代豆粕比例对湘东黑山羊血液生化指标、抗氧化指标、瘤胃发酵指标以及瘤胃细菌区系的影响。试验选取45只5~6月龄健康、体重相近[(18.2±1.6) kg]的湘东黑山羊公羊,随机分为3组,分别为对照组(CK组)、50%替代组(S1组)和100%替代组(S2组),预试期7 d,正试期55 d,每日晨饲前称取昨日剩料,每两周进行一次称重,在正试期54 d晨饲前对每头羊进行颈静脉采血,正试期54 d晨饲3 h后和55 d晨饲前采集口腔瘤胃液,用于测定血液指标、瘤胃发酵指标和瘤胃微生物组成。结果显示:S1和S2组的终末重(FBW)、平均日增重(ADG)和干物质采食量(DMI)均显著高于CK组(P<0.05);S2组的血清低密度脂蛋白(LDL-C)显著低于CK和S1组(P<0.05),血清白蛋白(ALB)和胆碱酯酶(CHE)显著高于CK组(P<0.05)。另外S1和S2组的血清总抗氧化能力(T-AOC)均显著高于CK组(P<0.05),但S2组的血清丙二醛(MDA)也显著高于CK组(P<0.05)。随着青贮饲料桑替代比例的增加,乙酸和异戊酸的摩尔比显著降低(P<0.05),丙酸和戊酸摩尔比随替代比例增加而上升。使用青贮饲料桑替代豆粕不会显著影响瘤胃微生物的Alpha多样性(P>0.05),3组优势菌门均为拟杆菌门和芽孢杆菌门,随青贮饲料桑替代比例的增加,芽孢杆菌门的丰度显著上升(P<0.05),拟杆菌门的丰度显著降低(P<0.05)。3组的优势菌属为Xylanibacter、丁酸弧菌、Segatella、解琥珀酸菌属、纤维杆菌属和Olivibacter。S2组的丁酸弧菌显著高于CK和S1组(P<0.05),Olivibacter显著低于CK和S1组(P<0.05)。上述研究结果表明:使用青贮饲料桑替代豆粕可以改善动物机体的代谢,增强抗氧化能力,且不会影响瘤胃微生物的Alpha多样性,在反刍动物养殖中有很好的应用前景。
We investigated the effects on the blood biochemical indexes, antioxidant indexes, rumen fermentation indexes, and rumen bacteria of two different ratios of mulberry silage as a replacement for soybean meal in the diet of Xiangdong black goats. Forty-five healthy Xiangdong black goat rams aged 5-6 months with similar body weight (18.2±1.6 kg) were randomly divided into three groups: a control group (group CK), a 50% replacement group (group S1) and a 100% replacement group (group S2). The pre-test period was 7 days, and the formal experimental period was 55 days. The remaining feed from the previous day was weighed every morning before feeding and the goats were weighed every 2 weeks. On the morning of the 54th day of the formal test period, blood samples were collected from the jugular vein of each goat. Rumen fluid was collected orally 3 hours after morning feeding on the 54th day and before morning feeding on the 55th day of the formal experimental period for the determination of blood indexes, rumen fermentation indexes, and rumen microbial composition. The results showed that the final body weight, average daily gain, and dry matter intake were significantly higher in the S1 and S2 groups than in the CK group (P<0.05). The serum low density lipoprotein cholesterol concentration was significantly lower in group S2 than in the CK group and group S1 (P<0.05), and serum albumin and cholinesterase concentrations were significantly higher in group S2 than in the CK group (P<0.05). The total antioxidant capacity was significantly higher in groups S1 and S2 than in the CK group (P<0.05), but the malondialdehyde content was significantly higher in group S2 than in the CK group (P<0.05). As the amount of mulberry protein in the diet increased, the molar ratio of acetic acid to isovaleric acid decreased significantly (P<0.05), and the molar ratio of propionic acid to valeric acid increased. The replacement of soybean meal in the diet with mulberry silage did not affect the alpha diversity of rumen microorganisms (P>0.05). The dominant taxa in the three groups were Bacteroidota and Bacillota. With increasing amounts of mulberry silage in the diet, the abundance of Bacillotaincreased significantly (P<0.05), and the abundance of Bacteroidota decreased significantly (P<0.05). The dominant bacteriain the threegroups were Xylanibacter, Butyrivibrio, Segatella,Succiniclasticum, Fibrobacter, and Olivibacter. The abundance of Butyrivibrio was significantly higher in group S2 than in the CK group and group S1 (P<0.05), and that of Olivibacter was significantly lower in group S2 than in the CK group and group S1 (P<0.05). These results show that replacing soybean meal with mulberry silage in the diet of goats improved their metabolism and increased their antioxidant capacity without affecting the alpha diversity of their rumen microorganisms. Therefore, this resource has promising applications in ruminant breeding.
青贮桑 / 豆粕蛋白 / 血液生化 / 瘤胃微生物 / 山羊
silage mulberry / soybean protein / blood biochemistry / rumen microorganism / goat
| [1] |
National animal nutrition guidance committee. Work plan for reducing the use of corn and soybean meal in pig and chicken feed. http://www.moa.gov.cn/gk/nszd_1/2021/202104/t20210421_6366304.htm, 2021-04-21. |
| [2] |
全国动物营养指导委员会. 猪鸡饲料玉米豆粕减量替代工作方案. http://www.moa.gov.cn/gk/nszd_1/2021/202104/t20210421_6366304.htm, 2021-04-21. |
| [3] |
Wang Y C, Zhai S S, Li M M, et al. Analysis of nutritional components of mulberry twig leaves from different producing areas and the nutrient utilization efficiency in Sichuan while geese. China Feed, 2016(16): 18-22, 27. |
| [4] |
王永昌, 翟双双, 李孟孟, 不同产地桑枝茎叶营养成分分析及四川白鹅对其养分利用率的测定. 中国饲料, 2016(16): 18-22, 27. |
| [5] |
Thaipitakwong T, Numhom S, Aramwit P. Mulberry leaves and their potential effects against cardiometabolic risks: a review of chemical compositions, biological properties and clinical efficacy. Pharmaceutical Biology, 2018, 56(1): 109-118. |
| [6] |
Wang W Z. Nutritional characteristics and utilization status of forage mulberry. Feed China, 2017(12): 42-43. |
| [7] |
汪文忠. 饲料用桑的营养特性及其开发利用现状. 饲料广角, 2017(12): 42-43. |
| [8] |
Rodrigues E L, Marcelino G, Silva G T, et al. Nutraceutical and medicinal potential of the morus species in metabolic dysfunctions. International Journal of Molecular Sciences, 2019, 20(2): 301. |
| [9] |
He X, Chen X, Ou X, et al. Evaluation of flavonoid and polyphenol constituents in mulberry leaves using HPLC fingerprint analysis. International Journal of Food Science & Technology, 2020, 55(2): 526-533. |
| [10] |
Cui H, Lu T, Wang M, et al. Flavonoids from Morus alba L. leaves: Optimization of extraction by response surface methodology and comprehensive evaluation of their antioxidant, antimicrobial, and inhibition of α-amylase activities through analytical hierarchy process. Molecules, 2019, 24(13): 2398. |
| [11] |
Wang H L, Zuo Y C, Zhou X K, et al.Influence of high planting density herbal cultivating on yield and quality of whole-plant mulberry (Morus alba). Pratacultural Science, 2020, 37(5): 952-962. |
| [12] |
王红林, 左艳春, 周晓康, 高密度草本化栽培对饲料桑全株产量及品质的影响. 草业科学, 2020, 37(5): 952-962. |
| [13] |
Li J M, Huang L, Zhu J N, et al. Preliminary study on mechanization mode of annual mulberry harvesting in Guangxi. Guangxi Agricultural Mechanization, 2018(6): 30-32. |
| [14] |
李建茂, 黄僚, 朱剑楠, 广西全年条桑收获机械化模式初探. 广西农业机械化, 2018(6): 30-32. |
| [15] |
Xu Q B, Li Y P, Tang S W, et al. Preliminary report on research and development of 4QZ-2200S type feed mulberry harvesting machinery. North Sericulture, 2018, 39(4): 48-50. |
| [16] |
徐清波, 李一平, 唐守伟, 4QZ-2200S型饲料桑收获机械研发初报. 北方蚕业, 2018, 39(4): 48-50. |
| [17] |
Huang J, Zhao N, Guo W Z, et al. Effects of feed mulberry on production performance, egg quality and intestinal tissue morphology of laying hens. China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 540-548. |
| [18] |
黄静, 赵娜, 郭万正, 饲料桑对蛋鸡生产性能、蛋品质及肠道组织形态的影响. 中国畜牧兽医, 2024, 51(2): 540-548. |
| [19] |
Huang J P, Zhao W G, Yang Z J, et al. Effects of forage mulberry addition on performance, immune and antioxidant function and rumen microflora of perinatal holstein dairy cows. Chinese Journal of Animal Nutrition, 2023, 35(11): 7224-7234. |
| [20] |
黄军鹏, 赵卫国, 杨赵军, 添加饲料桑对围产期奶牛生产性能、免疫和抗氧化功能及瘤胃微生物区系的影响. 动物营养学报, 2023, 35(11): 7224-7234. |
| [21] |
Fan Q W, Chen F, Du E C, et al. Effects of basal diet replaced by fermented feed mulberry with different proportions on rumen fermentation, rumen bacterial and fungal community structure of beef cattle. Chinese Journal of Animal Nutrition, 2024, 36(4): 2475-2486. |
| [22] |
樊启文, 陈芳, 杜恩存, 不同比例发酵饲料桑替代基础饲粮对肉牛瘤胃发酵、瘤胃细菌与真菌菌群结构的影响. 动物营养学报, 2024, 36(4): 2475-2486. |
| [23] |
Agricultural industry standards of the People’s Republic of China-feeding standard of meat-producing sheep and goats (NY/T816-2004). Hunan Feed, 2006(6): 9-15. |
| [24] |
中华人民共和国农业行业标准——肉羊饲养标准(NY/T816-2004). 湖南饲料, 2006(6): 9-15. |
| [25] |
Feng Z C, Gao M. Improvement of method for determination of ammonia nitrogen content in rumen fluid by colorimetric method. Animal Husbandry and Feed Science, 2010, 31(Z1): 37. |
| [26] |
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(Z1): 37. |
| [27] |
Hang Q. Effects of winter supplementary feeding of Leymus chinensis hay on fermentation performance and microbial diversity of rumen, liver metabolism for Hulunbuir ewes. Chongqing: Southwest University, 2023. |
| [28] |
黄棋. 冬季补饲羊草干草对呼伦贝尔母羊瘤胃发酵、微生物区系及肝脏代谢的影响. 重庆: 西南大学, 2023. |
| [29] |
Cai M. Study on evaluation of safety and feeding value of mulberry (Morus alba L.) leaves as animal feed. Lanzhou: Lanzhou University, 2019. |
| [30] |
蔡明. 桑叶作为动物饲料的安全性及饲用价值评价研究. 兰州: 兰州大学, 2019. |
| [31] |
Dong Z, Wang S, Zhao J, et al. Effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry (Morus alba L.) leaves silage. Asian-Australasian Journal of Animal Sciences, 2019, 33(8): 1292-1300. |
| [32] |
Ouyang Z L. Study on fattening test of mulberry leaf powder on binary hybrid pigs. Livestock and Poultry Industry, 2023, 34(10): 8-11. |
| [33] |
欧阳增理. 桑叶粉对二元杂交猪的育肥试验研究. 畜禽业, 2023, 34(10): 8-11. |
| [34] |
Li X, Ye T M, Liu G, et al. Effects of adding mulberry leaf powder into TMR granulated diets on growth performance, slaughter performance and economic benefits of Liuyang black goats. China Feed, 2023(11): 146-151. |
| [35] |
李霞, 叶添梅, 刘耕, TMR颗粒饲粮中桑叶粉比例对浏阳黑山羊生长性能、屠宰性能及经济效益的影响. 中国饲料, 2023(11): 146-151. |
| [36] |
Kou Y F. Nutrition dynamics of mulberry and its effect on production performance of fattening Hu sheep. Lanzhou: Lanzhou University, 2021. |
| [37] |
寇宇斐. 饲料桑的营养动态及其对育肥湖羊生产性能的影响. 兰州: 兰州大学, 2021. |
| [38] |
Luo Y, Yi K L, He F, et al. Effects of different adding proportions of fermented mulberry leaves on growth performance, serum indexes, muscle amino acid and fatty acid contents of Xiangdong Black Goats. Chinese Journal of Animal Nutrition, 2022, 34(12): 7923-7934. |
| [39] |
罗阳, 易康乐, 何芳, 不同添加比例发酵桑叶饲粮对湘东黑山羊生长性能、血清指标及肌肉氨基酸、脂肪酸含量的影响. 动物营养学报, 2022, 34(12): 7923-7934. |
| [40] |
Luo Y. Associative effects of mulberry leaves with Leymus chinensis and affects on rumen fermentation, growth performance, fat deposition in sheep fed with the combined forage diet. Yangzhou: Yangzhou University, 2019. |
| [41] |
罗阳. 桑树叶与羊草的组合效应及其对绵羊瘤胃发酵、生长性能、脂肪沉积和肉品质的影响. 扬州: 扬州大学, 2019. |
| [42] |
Ouyang J, Hou Q, Wang M, et al. Effects of dietary mulberry leaf powder on growth performance, blood metabolites, meat quality, and antioxidant enzyme-related gene expression of fattening Hu lambs. Canadian Journal of Animal Science, 2020, 100(3): 510-521. |
| [43] |
Zhou G L, Tao Y, Ni L G, et al. Serum biochemistry and expression of carcass trait-related gene of Sujiang pigs as affected by dietary makeup at final growth stage. Fujian Journal of Agricultural Sciences, 2019, 34(6): 668-677. |
| [44] |
周根来, 陶勇, 倪黎纲, 日粮营养水平对育肥苏姜猪血清生化指标和肉质相关基因的影响. 福建农业学报, 2019, 34(6): 668-677. |
| [45] |
Xu X D. Effect of mulberry leaf on growth performance, serum biochemical indexes and economic benefits of finishing pigs. Feed Research, 2023, 46(2): 46-50. |
| [46] |
许新迪. 蛋白桑对育肥猪生长性能、血清生化指标及养殖经济效益的影响. 饲料研究, 2023, 46(2): 46-50. |
| [47] |
Zhang S W, Wang X P, Zhang Z H, et al. Effects of Broussonetia papyrifera silage on growth performance, serum biochemical indexes and meat quality of Dorper×Hu crossbred sheep. Acta Prataculturae Sinica, 2021, 30(3): 89-99. |
| [48] |
张生伟, 王小平, 张展海, 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响. 草业学报, 2021, 30(3): 89-99. |
| [49] |
Yin L. Effects of gallnut tannic acid on the growth performance, meat quality, blood biochemistry and rumen fermentation of Liuyang black goat. Changsha: Hunan Agricultural University, 2024. |
| [50] |
殷磊. 五倍子单宁酸对浏阳黑山羊生长性能、肉品质、血液生化及瘤胃发酵的影响. 长沙: 湖南农业大学, 2024. |
| [51] |
Yan J S, Huan H L, Zhou W R, et al. Effect of biologics on growth performance, serum biochemical parameters and endocrine hormone in late fattening pigs of microbial fermentation bed system. China Animal Husbandry & Veterinary Medicine, 2014, 41(12): 126-130. |
| [52] |
闫俊书, 宦海琳, 周维仁, 日粮中添加生物制剂对发酵床育肥后期猪生长性能、血清生化指标及内分泌激素的影响. 中国畜牧兽医, 2014, 41(12): 126-130. |
| [53] |
Wan R, Liu M G, Liang Q B, et al. Effects of fermented mulberry leaves on growth performance and serum biochemical, antioxidant and immune indexes of Holstein calves. Chinese Journal of Animal Nutrition, 2023, 35(6): 3754-3760. |
| [54] |
万荣, 刘明革, 梁奇兵, 发酵桑叶对荷斯坦犊牛生长性能及血清生化、抗氧化和免疫指标的影响. 动物营养学报, 2023, 35(6): 3754-3760. |
| [55] |
Lu D X, Xie C W. Modern ruminant nutrition research methods and techniques. Beijing: Agriculture Press, 1991. |
| [56] |
卢德勋, 谢崇文. 现代反刍动物营养研究方法和技术. 北京: 农业出版社, 1991. |
| [57] |
Zhou Z, Zhou B, Ren L, et al. Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on finishing steer growth performance, blood biochemical parameters, and carcass characteristics. PLoS One, 2014, 9(1): e85406. |
| [58] |
Huang W Q, Lv X K, Wang S Q, et al. Effects of whole sugarcane on growth performance, nutrient apparent digestibility, serum indexes and rumen fermentation indexes of goats. Chinese Journal of Animal Nutrition, 2018, 30(12): 5182-5191. |
| [59] |
黄文琴, 吕小康, 王世琴, 全株甘蔗对山羊生长性能、营养物质表观消化率、血清指标及瘤胃发酵参数的影响. 动物营养学报, 2018, 30(12): 5182-5191. |
| [60] |
Aschenbach J R, Kristensen N B, Donkin S S, et al. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. Iubmb Life, 2010, 62(12): 869-877. |
| [61] |
Mizrahi I, Wallace R J, Morais S. The rumen microbiome: balancing food security and environmental impacts. Nature Reviews Microbiology, 2021, 19(9): 553-566. |
| [62] |
Deusch S, Camarinha-silva A, Conrad J, et al. A structural and functional elucidation of the rumen microbiome influenced by various diets and microenvironments. Frontiers in Microbiology, 2017, 8(1): 1605. |
| [63] |
Liu C, Wu H, Liu S, et al. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Frontiers in Microbiology, 2019, 10(1): 1116. |
| [64] |
Snelling T J, Wallace R J. The rumen microbial metaproteome as revealed by SDS-PAGE. BMC Microbiology, 2017, 17(1): 9. |
| [65] |
Hart E H, Creevey C J, Hitch T, et al. Meta-proteomics of rumen microbiota indicates niche compartmentalisation and functional dominance in a limited number of metabolic pathways between abundant bacteria. Scientific Reports, 2018, 8(1): 10504. |
| [66] |
Golder H M, Denman S E, Mcsweeney C, et al. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. Journal of Dairy Science, 2014, 97(9): 5763-5785. |
| [67] |
Murovec U, Accetto T. Transcriptomic analysis of polysaccharide utilization loci reveals substrate preferences in ruminal generalists Segatella bryantii TF1-3 and Xylanibacter ruminicola KHP1. BMC Genomics, 2024, 25(1): 495. |
| [68] |
Accetto T, Avgustin G. Non-oral prevotella stepping into the spotlight. Anaerobe, 2021, 68(1): 102321. |
| [69] |
Niu W J. Effects of whole wheat on nutrient digestion, rumen fermentation and microflora of Holstein bulls. Beijing: China Agricultural University, 2018. |
| [70] |
牛文静. 全株小麦对荷斯坦公牛养分消化、瘤胃发酵及微生物的影响. 北京: 中国农业大学, 2018. |
国家重点研发计划课题(2022YFD1300905)
湖南省草食动物产业技术体系资助
/
| 〈 |
|
〉 |