大豆GmPP2C28基因对百脉根结瘤固氮的功能研究
柯丹霞 , 侯仕博 , 周兆源 , 马云浩 , 陈志杰 , 宋晓莉 , 林佳诺
草业学报 ›› 2025, Vol. 34 ›› Issue (10) : 164 -173.
大豆GmPP2C28基因对百脉根结瘤固氮的功能研究
Functional identification of the role of soybean gene GmPP2C28 in the nitrogen-fixation process of Lotus japonicus
植物蛋白磷酸酶PP2C是植物至关重要的一类丝/苏氨酸蛋白磷酸酶。该家族基因在植物发育及多种逆境响应中起着关键作用,关于其在豆科植物与根瘤菌共生结瘤过程中的功能研究相对较少。本研究前期克隆了1个大豆PP2C家族基因GmPP2C28,并证实其受根瘤菌诱导表达。构建GmPP2C28基因的过表达载体p1302G-GmPP2C28,利用发根农杆菌LBA1334介导的百脉根毛根转化法获得带转基因毛状根的百脉根嵌合体植株。通过结瘤试验发现转GmPP2C28基因百脉根结瘤数目明显高于转空载体的对照植株,结瘤指示基因的转录水平显著上调。对根瘤切片进行甲苯胺蓝染色发现,过量表达GmPP2C28基因显著增加根瘤侵染区类菌体的数量。进一步对根瘤的固氮酶活性进行测定发现,过量表达GmPP2C28基因显著增加成熟期及衰老期根瘤的固氮酶活性。以上结果表明在百脉根中异源表达GmPP2C28基因,显著增加了嵌合体百脉根植株结瘤数目以及根瘤中类菌体的数量。此外,过表达GmPP2C28显著提高了成熟期以及衰亡期根瘤的固氮酶活性,从而大大延缓了根瘤的衰老。研究结果可为创制优良百脉根品种,充分发挥百脉根的生物固氮作用提供新的候选基因。
Protein phosphatase 2C (PP2C) is a crucial serine/threonine protein phosphatase in plants. These enzymes are encoded by a large gene family, and they play key roles in plant development and various stress responses. However, there is relatively little research on the role of PP2Cs in the formation of nodules in the symbiotic relationship between leguminous plants and rhizobia. Previously, a soybean (Glycine max) PP2C family gene GmPP2C28 was cloned and its expression was confirmed to be induced by rhizobia. In this study, we constructed a plant overexpression vector p1302G-GmPP2C28 and obtained transgenic Lotus japonicus plants using Agrobacterium tumefaciens LBA1334-mediated transformation of hairy roots. The transgenic GmPP2C28-expressing plants formed significantly more nodules than did those transformed with the empty vector, and the transcript level of the nodule indicator gene also tended to be higher in the transgenic plants than in the empty vector control plants. Methylamine blue staining of nodule slices revealed that overexpression of GmPP2C28 significantly increased the number of bacteroids in the infected area of the nodules. Analyses of nodule nitrogenase activity revealed that overexpression of GmPP2C28 significantly increased nitrogenase activity in mature and senescent nodules. Together, these results show that heterologous expression of GmPP2C28 in L. japonicus significantly increased the numbers of nodules and filamentous bacteria in the root nodules. In addition, overexpression of GmPP2C28 significantly increased nitrogenase activity in mature and decaying nodules, thereby greatly delaying nodule aging. The findings of this study identify a new candidate gene for creating excellent varieties of L. japonicus and other legume species with strong biological nitrogen fixation.
大豆 / 蛋白磷酸酶2C / 百脉根 / 共生固氮 / 根瘤衰老
soybean / protein phosphatase 2C / Lotus japonicus / symbiotic nitrogen fixation / nodule senescence
| [1] |
Xu Q Z, Wang X, Wang N, et al. Nitrogen inhibition of nitrogenase activity involves the modulation of cytosolic invertase in soybean nodule. Journal of Genetics and Genomics, 2024, 51(12): 1404-1412. |
| [2] |
Ke D X, Peng K P, Xia Y J, et al. Cloning of salt-stressed responsive gene GmWRKY6 and salt resistance analysis of transgenic Lotus japonicus. Acta Prataculturae Sinica, 2018, 27(8): 95-106. |
| [3] |
柯丹霞, 彭昆鹏, 夏远君, 盐胁迫应答基因GmWRKY6的克隆及转基因百脉根的抗盐分析. 草业学报, 2018, 27(8): 95-106. |
| [4] |
Schmid A C, Woscholski R. Phosphatases as small-molecule targets: inhibiting the endogenous inhibitors of kinases. Biochemical Society Transactions, 2004, 32(2): 348-349. |
| [5] |
Singh A, Jha S K, Bagri J, et al. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS One, 2015, 10(4): e0125168. |
| [6] |
Zhang F, Wei Q H, Shi J C, et al. Brachypodium distachyon BdPP2CA6 interacts with BdPYLs and BdSnRK2 and positively regulates salt tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 2017, 8: 264. |
| [7] |
Schweighofer A, Kazanaviciute V, Scheikl E, et al. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. The Plant Cell, 2007, 19(7): 2213-2224. |
| [8] |
Umbrasaite J, Schweighofer A, Kazanaviciute V, et al. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PLoS One, 2010, 5(12): e15357. |
| [9] |
Kapranov P, Jensen T J, Poulsen C, et al. A protein phosphatase 2C gene, LjNPP2C1, from Lotus japonicus induced during root nodule development. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1738-1743. |
| [10] |
Guan X M. LjPP2C, a protein phosphatases 2C from Lotus japonicus, functions as a negative regulator of MPK6 pathway. Wuhan: Huazhong Agricultural University, 2015. |
| [11] |
官晓敏. 百脉根LjPP2C蛋白磷酸酶负调控MPK6信号转导途径. 武汉: 华中农业大学, 2015. |
| [12] |
Lu X, Lai Y C, Du W G, et al. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant, 2017, 10(5): 670-684. |
| [13] |
Chen C, Yu Y, Ding X D, et al. Genome-wide analysis and expression profiling of PP2C clade D under saline and alkali stresses in wild soybean and Arabidopsis. Protoplasma, 2018, 255(2): 643-654. |
| [14] |
Bai G, Yang D H, Zhao Y, et al. Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Molecular Biology, 2013, 83(6): 651-664. |
| [15] |
Yang X X, Tang M S, Zhang B. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
| [16] |
杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析. 浙江农业学报, 2022, 34(2): 207-220. |
| [17] |
Zhang B. Functional analysis of soybean GmPP2C89 gene under salt stress. Acta Agriculturae Boreali-Sinica, 2022, 37(4): 20-27. |
| [18] |
张斌. 大豆GmPP2C89基因在盐胁迫中的功能分析. 华北农学报, 2022, 37(4): 20-27. |
| [19] |
Zhang Y J, Liu X Y, Chen L, et al. Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean (Glycine max Merr.) recombinant inbred lines. Plant and Soil, 2018, 431: 245-255. |
| [20] |
Wang J H, Wang J Q, Ma C, et al. QTL mapping and data mining to identify genes associated with the Sinorhizobium fredii HH103 T3SS effector NopD in soybean. Frontiers in Plant Science, 2020, 11: 453. |
| [21] |
Ke D X, Hou S B, Ma S Y, et al. Cloning and expression analysis of the protein phosphatase gene GmPP2C28 of soybean. Journal of Xinyang Normal University (Natural Science Edition), 2024, 37(3): 343-348. |
| [22] |
柯丹霞, 侯仕博, 马斯羽, 大豆蛋白磷酸酶基因GmPP2C28的克隆与表达分析. 信阳师范学院学报(自然科学版), 2024, 37(3): 343-348. |
| [23] |
Ke D X, Peng K P, Zhang M K, et al. Function of the soybean GmCYS20 gene in symbiotic nodulation of Lotus japonicus. Acta Prataculturae Sinica, 2018, 27(9): 132-141. |
| [24] |
柯丹霞, 彭昆鹏, 张孟珂, 大豆GmCYS20基因在百脉根共生结瘤过程中的功能研究. 草业学报, 2018, 27(9): 132-141. |
| [25] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
| [26] |
Ke D X, Feng S, Hu Y H, et al. Functional identification of soybean NADPH oxidase gene GmRbohL in the nodulation process of soybean. Acta Agriculturae Boreali-Sinica, 2023, 38(5): 29-38. |
| [27] |
柯丹霞, 冯爽, 胡艺涵, 大豆NADPH氧化酶基因GmRbohL在共生结瘤过程中的功能鉴定. 华北农学报, 2023, 38(5): 29-38. |
| [28] |
Yuan S, Ke D, Liu B, et al. The Bax inhibitor GmBI-1α interacts with a Nod factor receptor and plays a dual role in the legume-rhizobia symbiosis. Journal of Experimental Botany, 2023, 74(18): 5820-5839. |
| [29] |
Fan K, Yuan S N, Chen J, et al. Molecular evolution and lineage-specific expansion of the PP2C family in Zea mays. Planta, 2019, 250(5): 1521-1538. |
| [30] |
Shazadee H, Khan N, Wang J J, et al. Identification and expression profiling of protein phosphatases (PP2C) gene family in Gossypium hirsutum L. International Journal of Molecular Sciences, 2019, 20(6): 1395. |
| [31] |
Yu X F, Han J P, Wang E F, et al. Genome-wide identification and homoeologous expression analysis of PP2C genes in wheat (Triticum aestivum L.). Frontiers in Genetics, 2019, 10: 561. |
| [32] |
Wang Y F, Liao Y Q, Wang Y P, et al. Genome-wide identification and expression analysis of StPP2C gene family in response to multiple stresses in potato (Solanum tuberosum L.). Journal of Integrative Agriculture, 2020, 19(6): 1609-1624. |
| [33] |
Han Y G, Luo Y, Wei Z X, et al. Structure prediction and function analysis of protein phosphatase PPH1 from Arabidopsis thaliana. Chinese Journal of Applied and Environmental Biology, 2013, 19(1): 69-73. |
| [34] |
韩永光, 骆玥, 魏徵霄, 拟南芥蛋白磷酸酶PPH1的结构预测与功能分析. 应用与环境生物学报, 2013, 19(1): 69-73. |
| [35] |
Singh A, Pandey A, Srivastava A K, et al. Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Critical Reviews in Biotechnology, 2016, 36(6): 1023-1035. |
| [36] |
Lin X, Duan X Y, Liang Y Y, et al. PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell, 2006, 125(5): 915-928. |
| [37] |
Akhurst R J, Derynck R. TGF-beta signaling in cancer-a double-edged sword. Trends in Cell Biology, 2001, 11(11): S44-S51. |
| [38] |
Hanada M, Kobayashi T, Ohnishi M, et al. Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Letters, 1998, 437(3): 172-176. |
| [39] |
Takekawa M, Maeda T, Saito H. Protein phosphatase 2C alpha inhibits the human stress-responsive p38 and JNK MAPK pathways. The EMBO Journal, 1998, 17(16): 4744-4752. |
| [40] |
Zhou B, Wang Z X, Zhao Y, et al. The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. The Journal of Biological Chemistry, 2002, 277(35): 31818-31825. |
| [41] |
Hu X, Song F, Zheng Z. Molecular characterization and expression analysis of a rice protein phosphatase 2C gene, OsBIPP2C1, and overexpression in transgenic tobacco conferred enhanced disease resistance and abiotic tolerance. Plant Physiology, 2006, 127: 225-236. |
| [42] |
Seo J K, Kwon S J, Cho W K, et al. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Science Report, 2014, 4: 5905. |
| [43] |
Meskiene I, Baudouin E, Schweighofer A, et al. Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. Journal of Biological Chemistry, 2003, 278(21): 18945-18952. |
| [44] |
Cristina M S, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology, 2010, 61: 621-649. |
| [45] |
Schoenbeck M A, Samac D A, Fedorova M, et al. The alfalfa (Medicago sativa) TDY1 gene encodes a mitogen-activated protein kinase homolog. Molecular Plant-Microbe Interactions, 1999, 12(10): 882-893. |
| [46] |
Fernandez-Pascual M, Lucas M M, de Felipe M R, et al. Involvement of mitogen-activated protein kinases in the symbiosis Bradyrhizobium-Lupinus. Journal of Experimental Botany,2006, 57(11): 2735-2742. |
| [47] |
Lee H, Kim J, Im J H, et al. Mitogen-activated protein kinase is involved in the symbiotic interaction between Bradyrhizobium japonicum USDA110 and soybean. Journal of Plant Biology, 2008, 51(4): 291-296. |
国家自然科学基金项目(U1904102)
信阳师范大学“南湖学者奖励计划”青年项目和信阳师范大学研究生科研基金项目资助
/
| 〈 |
|
〉 |