新种苦豆子无毛毛壳菌Achaetomium sophora HY17产槐定碱发酵条件优化
唐致云 , 王文凯 , 刘冠兰 , 顾沛雯
草业学报 ›› 2025, Vol. 34 ›› Issue (10) : 151 -163.
新种苦豆子无毛毛壳菌Achaetomium sophora HY17产槐定碱发酵条件优化
Optimization of culture conditions for the sophoridine-producing new fungal species Achaetomium sophor strain HY17 isolated from seeds of Sophora alopecuroides
本研究旨在从苦豆子内生真菌中筛选获得高产槐定碱的菌株,并对其进行分类鉴定和产碱发酵条件优化,提高碱产率,为发酵过程提供优良的菌种资源。以前期从苦豆子健康种子中分离的50株内生真菌为材料,采用生物碱沉淀法和酸性染料比色法初筛,利用高效液相色谱法复筛得到高产槐定碱菌株,通过形态学和分子生物学确定其分类地位;通过单因素试验、Plackett-Burman试验、最陡爬坡试验和Box-Behnken design试验考察培养基成分(培养基种类、碳源和氮源)、发酵条件(培养天数和pH)、前体物质和诱导子对该菌株碱产率的影响,确定最佳产碱培养基、发酵条件和前体物质。结果表明,筛选获得一株高产槐定碱的菌株HY17,经鉴定为新种,命名为苦豆子无毛毛壳菌。Achaetomium sophora HY17菌株产槐定碱的最佳发酵参数为:在初始pH=6,碳源和氮源分别为玉米粉和干酪素的SDY液体培养基上培养8 d,添加L-赖氨酸、L-哌啶酸和苯丙氨酸浓度分别为1.044 g·L-1,0.081 g·L-1,1.995 g·L-1时,碱产率达到最大,为1.369 mg·g-1。与对照相比,优化后碱产率提高了61.95%。A. sophora HY17菌株能够稳定高产槐定碱,这为通过微生物发酵生产槐定碱提供了一种新方法。
The aim of this study was to screen for endophytic fungal strains of Achaetomium sophora infecting Sophora alopecuroides that produce sophoridine alkaloid, classify and identify them, and then identify in-vitro culture conditions that optimize the alkaloid production of the endophyte fungus. The overall goal was to improve alkaloid yield and obtain excellent strains for culture. Fifty strains of A. sophora isolated from healthy S. alopecuroides seeds were screened using alkaloid precipitation, acid dye colorimetry, and high-performance liquid chromatography analyses. The strains were identified through morphological and molecular analyses. Subsequently, a series of methods including the single factor test, Plackett-Burman (PB) test, steepest climb test, and response surface test (Box-Behnken test) were used to investigate the effects of medium composition (medium type, carbon and nitrogen sources), culture conditions (incubation time and pH), and precursors and inducers on the alkali yield of selected fungal strains. From the results of these analyses, the optimal alkali-producing medium, culture conditions, and precursors for sophoridine alkaloid production were determined. The fungal strain HY17 producing sophoridine at high levels was identified as a new species, Achaetomium sophora. The optimal culture conditions for A. sophora HY17 were determined to be SDY liquid medium with an initial pH of 6 and a culture period of 8 days, with maize flour as the carbon source and casein as the nitrogen source. Tyrosine, L-lysine, L-piperidinic acid, and phenylalanine had significant effects on sophoridine production by strain HY17 during culture. The addition of L-lysine (1.044 g·L-1), L-piperidinic acid (0.081 g·L-1), and phenylalanine (1.995 g·L-1) resulted in a maximum alkaloid yield of 1.369 mg·g-1 mycelium under these optimized conditions, representing a remarkable increase of 61.95% compared with that obtained under the original culture conditions. A. sophora HY17 produced sophoridine at a high and stable rate. Optimization of the culture conditions resulted in a notable increase in alkaloid production. The results of this study offer a novel approach for sophoridine production through in-vitro culture of the fungal endophyte, A. sophora strain HY17 isolated from S. alopecuroides.
苦豆子无毛毛壳菌Achaetomium sophora HY17 / 筛选鉴定 / 槐定碱 / 发酵条件优化 / 响应面法分析
Sophora alopecuroides HY17 / screening and identification / sophoridine / optimization of fermentation conditions / response surface methodology (RSM)
| [1] |
Ren G, Ding G T, Zhang H Y, et al. Antiviral activity of sophoridine against enterovirus 71 in vitro. Journal of Ethnopharmacology, 2019, 236: 124-128. |
| [2] |
Ma T, Yan H, Shi X L, et al. Comprehensive evaluation of effective constituents in total alkaloids from Sophora alopecuroides L. and their joint action against aphids by laboratory toxicity and field efficacy. Industrial Crops and Products, 2018, 111: 149-157. |
| [3] |
Wang R, Deng X, Gao Q, et al. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. Journal of Ethnopharmacology, 2020, 248: 112172. |
| [4] |
Song X H, Pan Y, Li L Y, et al. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. Public Library of Science One, 2018, 13(3): e0193811. |
| [5] |
Zhang G. An endophytic fungus from Gamptotheca acuminate that produce GPT and research of biology of GPT. Guiyang: Guizhou University, 2007. |
| [6] |
张根. 产喜树碱内生真菌的分离、鉴定及生物学活性研究. 贵阳: 贵州大学, 2007. |
| [7] |
Gao L, Wang K X, Zhou Y Z, et al. Uncovering the anticancer mechanism of compound kushen injection against HCC by integrating quantitative analysis, network analysis and experimental validation. Scientific Reports, 2018, 8(1): 624. |
| [8] |
Cao X, Xu L, Wang J, et al. Endophytic fungus Pseudodidymocyrtis lobariellae KL27 promotes taxol biosynthesis and accumulation in Taxus chinensis. BMC Plant Biology, 2022, 22(1): 1-18. |
| [9] |
Toghueo R M K, Sahal D, Zabalgogeazcoa Í, et al. Conditioned media and organic elicitors underpin the production of potent antiplasmodial metabolites by endophytic fungi from Cameroonian medicinal plants. Parasitology Research, 2018, 117: 2473-2485. |
| [10] |
Kusari S, Hertweck C, Spitellert M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology, 2012, 19(7): 792-798. |
| [11] |
Luo D, Lin Q, Tan J L, et al. Water-soluble matrine-type alkaloids with potential anti-neuroinflammatory activities from the seeds of Sophora alopecuroides. Bioorganic Chemistry, 2021, 116: 105337. |
| [12] |
Ju M X, Zhang Q, Wang R, et al. Correlation in endophytic fungi community diversity and bioactive compounds of Sophora alopecuroides. Frontiers in Microbiology, 2022, 13: 955647. |
| [13] |
Yu Y T, He S H, Zhao Q M. Isolation and identification of matrine-producing fungal endophytes from Sophora alopecuroides in Ningxia. Scientia Agricultura Sinica, 2013, 46(13): 2643-2654. |
| [14] |
余永涛, 何生虎, 赵清梅. 宁夏苦豆子中产苦参碱内生真菌的分离与鉴定. 中国农业科学, 2013, 46(13): 2643-2654. |
| [15] |
Cao K, Chen J, Lu X, et al. Matrine-producing endophytic fungus Galactomyces candidum TRP-7: Screening, identification, and fermentation conditions optimization for matrine production. Biotechnology Letters, 2023, 45(2): 209-223. |
| [16] |
Cook D, Gardner D R, Grum D, et al. Swainsonine and endophyte relationships in Astragalus mollissimus and Astragalus lentiginosus. Journal of Agricultural and Food Chemistry, 2011, 59(4): 1281-1287. |
| [17] |
Chen Q, Wang J, Gao Y, et al. Optimization of fermentation conditions and product identification of a saponin-producing endophytic fungus. Microorganisms, 2023, 11(9): 2331. |
| [18] |
Yang G D. Study on biosynthesis of swainsonine by the locoweed’s endophytic fungi. Yangling: Northwest A & F University, 2012. |
| [19] |
杨国栋. 疯草内生真菌合成苦马豆素的研究. 杨凌: 西北农林科技大学, 2012. |
| [20] |
Zhuang J H, Gao Z G, Liu X, et al. Effect of fermentation factors on spore types of Trichoderma strain 23. Chinese Journal of Biological Control, 2005, 21(1): 37-40. |
| [21] |
庄敬华, 高增贵, 刘限, 不同发酵条件对木霉产孢类型的影响. 中国生物防治学报, 2005, 21(1): 37-40. |
| [22] |
Li Q N, Yin Y F, Ma Y, et al. Study on the optimum medium and concentration of fly maggot-killing conidia of Metarhizium brunneum. Heilongjiang Animal Science and Veterinary Medicine, 2024(8): 60-67, 76. |
| [23] |
李倩楠, 尹衍峰, 马园, 棕色绿僵菌最适培养基和杀蝇蛆分生孢子浓度探究. 黑龙江畜牧兽医, 2024(8): 60-67, 76. |
| [24] |
Jin J. Screening and optimization of alkaloid-producing endophytic fungi of Sophora alopecuroides L. for quinolizidine alkaloids. Yinchuan: Ningxia University, 2022. |
| [25] |
金婧. 产喹诺里西啶生物碱苦豆子内生真菌的筛选与产碱条件的优化. 银川: 宁夏大学, 2022. |
| [26] |
Henzelyová J, Antalová M, Nigutová K, et al. Isolation, characterization and targeted metabolic evaluation of endophytic fungi harbored in 14 seed-derived Hypericum species. Planta Medica, 2020, 86(13/14): 997-1008. |
| [27] |
Wang W K, Ju M X, Jin J, et al. Screening of alkaloid-producing endophytic fungi from Sophora alopecuroides and optimization of their fermentation conditions. Acta Agrestia Sinica, 2025, 33(1): 307-316. |
| [28] |
王文凯, 鞠明岫, 金婧, 产生物碱苦豆子内生真菌筛选及其发酵条件优化. 草地学报, 2025, 33(1): 307-316. |
| [29] |
Ju M X, Zhang Q Q, Wang R T, et al. Community ecological succession of endophytic fungi associates with medicinal compound accumulation in Sophora alopecuroides. Microbiological Spectrum, 2024, 12(2): e03076-23. |
| [30] |
Wang Q, Li Y, Li K W, et al. Sophoridine: A review of its pharmacology, pharmacokinetics and toxicity. Phytomedicine, 2022, 95: 153756. |
| [31] |
Zhang X G, Guo S J, Wang W N, et al. Diversity and bioactivity of endophytes from Angelica sinensis in China. Frontiers in Microbiology, 2020, 11: 1489. |
| [32] |
Berbee M L, Pirseyedi M, Hubbard S. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 1999, 91(6): 964-977. |
| [33] |
Dwibedi V, Rath S K, Jain S, et al. Key insights into secondary metabolites from various Chaetomium species. Applied Microbiology and Biotechnology, 2023, 107(4): 1077-1093. |
| [34] |
Anitha K P G U, Mythili S. Antioxidant and hepatoprotective potentials of novel endophytic fungus Achaetomium sp., from Euphorbia hirta. Asian Pacific Journal of Tropical Medicine, 2017, 10(6): 588-593. |
| [35] |
Zhou W, Cai M, Na K, et al. pH-dependent accumulation of anticancer compound on mycelia in fermentation of marine fungus. Journal of Industrial Microbiology and Biotechnology, 2014, 41(7): 1169-1173. |
| [36] |
Hu Z, Weng Q, Cai Z, et al. Optimization of fermentation conditions and medium components for chrysomycin a production by Streptomyces sp. 891-B6. BMC Microbiology, 2024, 24(1): 120. |
| [37] |
Zhang Y H, Li H, Zhang M Q, et al. Identification of a cellulose-degrading bacteria from silkworm excrement and optimization of enzyme production and its bioaugmentation effect. Acta Sericologica Sinica, 2023, 49(6): 551-559. |
| [38] |
张元昊, 李豪, 张敏琪, 一株蚕沙纤维素降解菌的鉴定及产酶优化和生物强化效果. 蚕业科学, 2023, 49(6): 551-559. |
| [39] |
Wu X L. Studies on feather-degrading Flavobacterium breve ZDM, the fermentation conditions and characteristics of keratinase. Hangzhou: Zhejiang University, 2001. |
| [40] |
吴小伦. 羽毛角蛋白降解菌(Flavobacterium breve ZDM)的分离、鉴定及其发酵产酶条件和酶学特性的研究. 杭州: 浙江大学, 2001. |
| [41] |
Tang Q, Liu Y, Peng X, et al. Research progress in the pharmacological activities, toxicities, and pharmacokinetics of sophoridine and its derivatives. Drug Design, Development and Therapy, 2023, 16: 191-212. |
| [42] |
Wei Z J, Zhou L C, Chen H, et al. Optimization of the fermentation conditions for 1-deoxynojirimycin production by Streptomyces lawendulae applying the response surface methodology. International Journal of Food Engineering, 2011, 7(3), 10.2202/1556-3758.2354. |
| [43] |
Chen D, Sheng W, Wang D, et al. Effective purification of high concentration chromium-containing wastewater and preparation of chromium ferrite. Environmental Engineering Research, 2023, 28(6): 220706. |
| [44] |
Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnology Advances, 2015, 33(6): 873-887. |
| [45] |
Pu X, Qu X, Chen F, et al. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Applied Microbiology and Biotechnology, 2013, 97: 9365-9375. |
| [46] |
Zhao X M, Wang Z Q, Shu S H, et al. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026. PLoS One, 2013, 8(4): e61777. |
| [47] |
Li Y, Wang G, Liu J, et al. Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. European Journal of Medicinal Chemistry, 2020, 188: 111972. |
| [48] |
Ramírez-Betancourt A, Hernández-Sánchez A M, Salcedo-Morales G, et al. Unraveling the biosynthesis of quinolizidine alkaloids using the genetic and chemical diversity of mexican lupins. Diversity, 2021, 13(8): 375. |
| [49] |
Bunsupa S, Yamazaki M, Saito K. Quinolizidine alkaloid biosynthesis: Recent advances and future prospects. Frontiers in Plant Science, 2012, 3: 239. |
| [50] |
Zhang L L, Yu Y T, He S H, et al. Influence of different factors on swainsonine production in fungal endophyte from locoweed. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2015, 46(1): 163-173. |
| [51] |
张蕾蕾, 余永涛, 何生虎, 不同因素对疯草内生真菌合成苦马豆素的影响. 畜牧兽医学报, 2015, 46(1): 163-173. |
宁夏重点研发计划项目“贺兰山东麓酿酒葡萄根部病害生物防控专用菌剂的研制与应用”(2023BCF01026)
/
| 〈 |
|
〉 |