松针精油对构树青贮品质及有氧稳定性的影响

邓清源 ,  付东青 ,  黄嵘峥 ,  张凡凡 ,  孙国君

草业学报 ›› 2025, Vol. 34 ›› Issue (10) : 85 -94.

PDF (619KB)
草业学报 ›› 2025, Vol. 34 ›› Issue (10) : 85 -94. DOI: 10.11686/cyxb2024460
研究论文

松针精油对构树青贮品质及有氧稳定性的影响

作者信息 +

Effects of pine needle essential oil on the quality and aerobic stability of Broussonetia papyrifera silage

Author information +
文章历史 +
PDF (632K)

摘要

本研究旨在明确松针精油对构树青贮品质及有氧稳定性的影响,为构树青贮加工利用提供理论支撑。试验采用单因素设计,分为4组,试验组分别在每kg构树青贮中添加160(Ⅰ组)、320(Ⅱ组)和480 mg(Ⅲ组)松针精油,并设置自然发酵组作为对照组(CK组)。在青贮的第3、7、15、30和60天取样,分析其营养成分、发酵品质及微生物数量,并取60 d样品分析其有氧稳定性。结果表明:青贮3 d,Ⅰ、Ⅱ和Ⅲ组可溶性碳水化合物(WSC)含量、乳酸(LA)和乙酸(AA)浓度显著高于CK组(P<0.05),pH、氨态氮/总氮(NH3-N/TN)、丙酸(PA)浓度和霉菌数量显著低于CK组(P<0.05),Ⅱ和Ⅲ组乳酸菌和酵母菌数量与CK组间差异显著(P<0.05)。青贮7 d,Ⅰ、Ⅱ和Ⅲ组乳酸、乙酸浓度和乳酸菌数量显著高于CK组(P<0.05),pH、NH3-N/TN、丙酸浓度、酵母菌和霉菌数量显著低于CK组(P<0.05),Ⅱ和Ⅲ组干物质(DM)和WSC含量显著高于CK组(P<0.05)。青贮15 d,Ⅰ、Ⅱ和Ⅲ组粗蛋白(CP)、WSC含量、乳酸、乙酸浓度和乳酸菌数量显著高于CK组(P<0.05),pH、NH3-N/TN、丙酸浓度、酵母菌和霉菌数量显著低于CK组(P<0.05)。青贮30 d,Ⅰ、Ⅱ和Ⅲ组WSC含量、乳酸、乙酸浓度和乳酸菌数量显著高于CK组(P<0.05),pH、NH3-N/TN、丙酸浓度、酵母菌数量显著低于CK组(P<0.05)。青贮60 d,Ⅰ、Ⅱ和Ⅲ组CP、WSC含量、乳酸、乙酸浓度和乳酸菌数量显著高于CK组(P<0.05),pH、NH3-N/TN、丙酸浓度和酵母菌数量显著低于CK组(P<0.05),Ⅱ和Ⅲ组的有氧稳定性显著高于CK和Ⅰ组(P<0.05)。综上所述,松针精油可以减少构树青贮中CP和WSC损失,提高乳酸、乙酸浓度和乳酸菌数量,降低pH,抑制霉菌繁殖;同时能显著提高构树青贮的有氧稳定性。以480 mg·kg-1添加量改善效果为最佳。

Abstract

This study aimed to elucidate the effects of pine needle (Pinus) essential oil on the quality and aerobic stability of Broussonetia papyrifera silage, and thereby provide technical data to facilitate its processing and utilization. B. papyrifera was fermented spontaneously with no addition of pine needle oil (CK), or with addition of 160 mg·kg-1 (Ⅰ), 320 mg·kg-1 (Ⅱ) or 480 mg·kg-1 (Ⅲ) pine needle oil in a single-factor experiment. Various parameters, including the nutritional composition, fermentation quality and microbial count of the B. papyrifera silage were evaluated throughout the ensiling process (3, 7, 15, 30 and 60 days). Additionally, aerobic stability was assessed at 60 days. It was found that on day 3 of ensiling, the water-soluble carbohydrate (WSC) content, lactic acid (LA) concentration, and acetic acid (AA) concentrations in groups Ⅰ, Ⅱ, and Ⅲ were significantly higher than those of CK (P<0.05). Conversely, pH level, ammonia nitrogen∶total nitrogen (NH3-N∶TN), propionic acid (PA) concentration, and mold count were significantly lower in the treated silages than in CK (P<0.05). Lactic acid bacteria counts and yeast counts in groups Ⅱ and Ⅲ differed significantly from those of CK (P<0.05). On day 7 of ensiling, lactate concentration, acetic acid concentration, and lactic acid bacteria count in groups Ⅰ, Ⅱ, and Ⅲ were significantly higher than those in the CK group (P<0.05). In contrast, pH level, NH3-N∶TN, PA concentration, yeast counts and mold counts on day 7 were significantly lower in these groups than in CK (P<0.05). Additionally, the dry matter (DM) content and WSC content in groups Ⅱ and Ⅲ were also significantly higher than those observed in CK (P<0.05). On day 15, the crude protein (CP) content, WSC content, lactate concentration, acetic acid concentration and lactic acid bacteria count in groups Ⅰ, Ⅱ, and Ⅲ were significantly higher than in CK (P<0.05). Conversely, pH level, NH3-N∶TN, PA concentration, yeast count and mold count in groups Ⅰ, Ⅱ, and Ⅲ were significantly lower than in CK (P<0.05). On day 30, the WSC contents, lactate concentrations, acetic acid concentrations, and lactic acid bacteria counts in groups I, Ⅱ, and Ⅲ were significantly elevated compared to CK (P<0.05). Conversely, there was a significant reduction in the pH level, NH3-N∶TN, PA concentration, and yeast counts compared to the CK (P<0.05). On day 60, the CP content, WSC content, lactic acid concentration, acetic acid concentration, and lactic acid bacteria counts in groups I, Ⅱ, and Ⅲ were significantly higher than in CK (P<0.05). As earlier, pH level, NH3-N∶TN, PA concentration, and yeast counts were significantly decreased compared with the CK (P<0.05). The aerobic stability of groups Ⅱ and Ⅲ was notably superior to that of both group I and CK (P<0.05). In summary, pine needle essential oil effectively reduced the loss of CP and WSC during silage production. It increased lactate concentration, acetic acid concentration, and lactic acid bacteria count, while lowering pH level, and inhibiting mold proliferation. Furthermore, it significantly improved the aerobic stability of B. papyrifera silage. The addition of 480 mg·kg-1 produced the most pronounced silage fermentation improvement effect.

Graphical abstract

关键词

松针精油 / 构树青贮 / 营养成分 / 发酵品质 / 有氧稳定性

Key words

pine needle essential oil / Broussonetia papyrifera silage / nutrient composition / fermentation quality / aerobic stability

引用本文

引用格式 ▾
邓清源,付东青,黄嵘峥,张凡凡,孙国君. 松针精油对构树青贮品质及有氧稳定性的影响[J]. 草业学报, 2025, 34(10): 85-94 DOI:10.11686/cyxb2024460

登录浏览全文

4963

注册一个新账户 忘记密码

构树(Broussonetia papyrifera)是桑科构属植物,产量高,营养物质丰富,是蛋白饲料短缺背景下重要的非常规饲料原料。诸多研究证实,使用构树青贮代替苜蓿(Medicago sativa)、玉米(Zea mays)青贮等常规饲料不仅对动物的生长性能无负面影响1;且能提高动物的免疫性能,改善肉、奶产品品质等2-3。然而,构树中粗蛋白(crude protein,CP)含量较高、可溶性碳水化合物(water soluble carbohydrates,WSC)含量较低,缓冲能值较高,在青贮前期pH不易降低,霉菌、梭菌等有害微生物滋生,导致青贮成功率下降、发酵损失增加,严重造成饲料资源的浪费4。因此,如何减少霉菌、梭菌等有害微生物对构树发酵体系的干扰,是目前需要解决的关键问题。
针对高蛋白饲草原料,目前生产上通常使用菌制剂、酶制剂、有机酸等青贮添加剂抑制有害微生物的生长,改善青贮饲料品质5-6。但传统的菌、酶制剂效果不稳定,有机酸等化学添加剂不仅会对环境造成污染,过量添加还会对牲畜产生毒副作用。植物精油是植物组织中的次生代谢产物,其主要成分是单萜和倍半萜,具有挥发性。植物精油能通过改变细胞膜的通透性、破坏细胞壁结构等方式抑制微生物的增殖,是天然的抗菌物质7,但对不同微生物的抑制程度存在差异。有研究表明,植物精油对乳酸菌的最小抑制浓度远远高于霉菌、梭菌等有害细菌8-9;向青贮饲料中加入适量的植物精油能抑制有害菌的增殖,提高饲料的青贮品质10。其中,砂仁(Amomum villosum)精油能降低构树青贮的氨态氮(ammonia-N,NH3-N)含量和pH,提高乳酸含量11。另有研究表明,不同植物精油对同一青贮饲料的改善效果不同10,而松针(Pinus)精油对常见青贮有害菌表现出较好的抑菌活性,具有改善青贮饲料品质的潜力12-13。本课题组前期研究发现,松针精油能减少苜蓿青贮中CP和WSC的损失,降低pH值,提高苜蓿青贮的有氧稳定性14。理论上看,构树与苜蓿营养特性相似,但尚未有研究证实松针精油能够改善构树青贮品质。鉴于此,本研究通过在构树青贮中添加不同浓度松针精油,通过分析其青贮发酵品质、有氧稳定性等指标,明确松针精油对构树青贮发酵的影响,以期为提高构树青贮高效生产提供理论依据。

1 材料与方法

1.1 试验材料

试验所用构树产自新疆生产建设兵团第七师构树种植示范基地(东经84°55′,北纬44°25′,温带大陆性干旱气候),2023年8月20日收割,株高约1.2 m,留茬高度约10 cm,全株刈割。构树原料的营养成分见表1。松针精油购自北京普华仕公司,纯度≥99%。

1.2 试验设计

采用单因素试验设计,试验分为4组,在每kg原料中分别添加160(Ⅰ组)、320(Ⅱ组)和480 mg(Ⅲ组)松针精油,另设一组自然发酵为对照组(CK)。全株构树收割后萎蔫3 h,切碎长度约2 cm,将各组松针精油用20 mL 70%乙醇配置成不同浓度的乙醇溶液,喷洒于构树原料中,CK组均匀喷洒等体积70%乙醇。喷洒后立即搅拌均匀,装入聚乙烯真空包装袋密封,每份1 kg,避光发酵,分别于青贮发酵的3、7、15、30、60 d开袋取样,每组每个时间点3个重复,60 d另设3个重复,以用于有氧稳定性的测定,每个处理18袋,共计72袋。

1.3 检测指标

营养成分测定:主要测定干物质(dry matter,DM)、CP、中性洗涤纤维(neutral detergent fiber,NDF)、酸性洗涤纤维(acid detergent fiber,ADF)和WSC。其中DM含量测定采用烘干法(GB/T 6435-2014)15、CP含量测定采用凯氏定氮法(GB/T 6432-2018)16、NDF和ADF含量测定采用范氏洗涤纤维法(GB/T 20806-2022和NY/T 1459-2022)17-18,WSC含量测定采用蒽酮比色法19

发酵品质测定:主要测定pH值、NH3-N、乳酸(lactic acid,LA)、乙酸(acetic acid,AA)、丙酸(propionic acid,PA)以及丁酸(butyric acid,BA)。pH使用便携式pH计(pH3110SET2,德国WTW公司)测定,NH3-N含量采用苯酚-次氯酸钠比色法测定20,按照CP含量乘16%计算样品总氮(total-N,TN)含量,将测得的NH3-N含量折算为氨态氮∶总氮(ammonia-N/total-N,NH3-N/TN),4种有机酸含量采用高效液相色谱法测定(Acquity Uplc H-Class Plus型高效液相色谱仪,美国沃特世公司)21

微生物数量测定:采用平板计数法22进行计数,测定乳酸菌、酵母菌、霉菌和好氧细菌数量。乳酸菌采用MRS琼脂培养基(酪蛋白酶消化物10 g·L-1,牛肉膏粉10 g·L-1,酵母膏粉4 g·L-1,柠檬酸三铵2 g·L-1,乙酸钠5 g·L-1,硫酸镁0.2 g·L-1,硫酸锰0.05 g·L-1,磷酸氢二钾2 g·L-1,葡糖糖20 g·L-1,吐温-80 1.08 g·L-1,琼脂15 g·L-1)在37 ℃条件下培养48 h;酵母菌和霉菌分别采用麦芽浸粉琼脂培养基(蛋白胨0.78 g·L-1,麦芽糖12.75 g·L-1,糊精2.75 g·L-1,丙三醇2.35 g·L-1,琼脂15.0 g·L-1)与高盐察氏培养基(硝酸钠2.0 g·L-1,磷酸氢二钾1.0 g·L-1,硫酸镁0.5 g·L-1,氯化钾0.5 g·L-1,硫酸亚铁0.01 g·L-1,氯化钠60.0 g·L-1,蔗糖30.0 g·L-1,琼脂16.0 g·L-1)在30 ℃条件下培养24 h;好氧细菌采用营养琼脂培养基(蛋白胨10 g·L-1,牛肉膏粉3 g·L-1,氯化钠5 g·L-1,琼脂15 g·L-1)在30 ℃条件下培养24 h。

有氧稳定性测定:有氧稳定性是指青贮饲料温度不高于环境温度2 ℃的保存时间。取1000 g青贮60 d的构树样品置于自封袋中,不压实、不密封,室温放置,用多点式温度记录仪(i500-E3TW,玉环智拓仪器科技有限公司)监测饲料中心内的温度和环境温度,设定每隔30 min记录一次温度23

1.4 数据统计分析

采用Microsoft Office Excel 2021整理试验数据,使用SPSS 26.0软件进行单因素ANOVA检验,采用Duncan法进行多重比较,以P<0.05作为差异显著性判断标准。利用Origin 2022软件进行绘图。

2 结果与分析

2.1 松针精油对构树青贮营养成分的影响

表2所示,Ⅲ组3和15 d WSC含量、15 d CP含量显著高于Ⅰ组,且各处理组显著高于CK组(P<0.05)。Ⅲ组7 d CP含量、15和60 d DM含量显著高于CK组(P<0.05),7 d WSC含量、30 d DM含量和30 d CP含量显著高于CK和Ⅰ组(P<0.05)。Ⅱ和Ⅲ组7 d DM含量显著高于CK组(P<0.05),30和60 d WSC含量、60 d CP含量显著高于CK和Ⅰ组(P<0.05)。所有时间点各组NDF、ADF差异均不显著(P>0.05)。3~15 d各组DM、CP和WSC显著下降(P<0.05),15~30 d各组CP和WSC显著下降(P<0.05),Ⅰ和Ⅲ组DM显著下降(P<0.05),30~60 d CK组CP显著下降(P<0.05)。

2.2 松针精油对构树青贮发酵品质的影响

表3所示,CK、Ⅰ、Ⅱ和Ⅲ组60 d pH和所有时间点的NH3-N/TN依次显著降低(P<0.05),15、30、60 d 乳酸浓度和3、7、30、60 d 乙酸浓度依次显著升高(P<0.05)。Ⅲ组3 d pH,3、15和30 d 丙酸浓度显著低于CK和Ⅰ组(P<0.05)。Ⅲ组3 d 乳酸浓度显著高于CK、Ⅰ和Ⅱ组(P<0.05)。Ⅱ和Ⅲ组7 d 乳酸浓度和15 d 乙酸浓度显著高于CK和Ⅰ组(P<0.05)。Ⅲ组7 d pH和60 d 丙酸浓度显著低于CK、Ⅰ和Ⅱ组(P<0.05)。Ⅱ和Ⅲ组15和30 d pH显著低于CK和Ⅰ组(P<0.05)。各处理组7 d 丙酸浓度显著低于CK组(P<0.05)。3~7 d和15~30 d Ⅰ组丙酸浓度显著升高(P<0.05)。3~30 d各组pH和NH3-N/TN显著增加(P<0.05),乳酸、乙酸和丙酸浓度显著升高(P<0.05)。30~60 d CK和Ⅱ组NH3-N/TN显著增加(P<0.05),各组乙酸浓度、CK组乳酸浓度、CK和Ⅲ组丙酸浓度显著升高(P<0.05)。

2.3 松针精油对构树青贮中微生物数量的影响

表4所示,7 d Ⅲ组酵母菌数量显著低于Ⅰ组,且各处理组显著低于CK组(P<0.05)。Ⅲ组7和15 d乳酸菌数量显著高于Ⅱ组,且Ⅱ和Ⅲ组显著高于CK和Ⅰ组(P<0.05)。Ⅲ组7和15 d好氧细菌数量显著低于CK组(P<0.05),60 d乳酸菌数量显著高于CK、Ⅰ和Ⅱ组(P<0.05)。Ⅱ和Ⅲ组3 d酵母菌数量显著低于CK和Ⅰ组(P<0.05),3 d好氧细菌数量显著低于CK组(P<0.05),3和30 d乳酸菌数量显著高于CK和Ⅰ组(P<0.05),3、7 d霉菌数量、15、30、60 d酵母菌数量及30、60 d好氧细菌数量显著低于CK和Ⅰ组(P<0.05)。各处理组15 d霉菌数量显著低于CK组(P<0.05)。3~7 d 各组乳酸菌数量显著上升(P<0.05),7~15 d Ⅱ组、15~30 d CK组和Ⅲ组、30~60 d CK、Ⅰ和Ⅱ组乳酸菌数量显著下降(P<0.05)。3~60 d CK、Ⅰ和Ⅱ组酵母菌和好氧细菌数量显著下降(P<0.05),Ⅲ组好氧细菌数量显著下降(P<0.05)。3~7 d和15~60 d Ⅲ组酵母菌数量显著下降(P<0.05)。3~30 d 各组霉菌数量显著下降(P<0.05)。

2.4 松针精油对构树青贮有氧稳定性的影响

图1所示,构树青贮经过松针精油处理后,各组的有氧稳定性显著高于CK组(P<0.05),其中Ⅲ组最高,为90.3 h。其次Ⅱ组的有氧稳定性为88.5 h,Ⅰ组的有氧稳定性为62.7 h,CK组的有氧稳定性为41.5 h。

3 讨论

3.1 松针精油对构树青贮营养成分和发酵品质的影响

青贮发酵是利用植物附生的乳酸菌将WSC转化成有机酸的过程,青贮饲料的pH会随着有机酸的积累而降低,进而抑制有害微生物增殖。青贮饲料中的可溶性物质被微生物大量消耗,所以青贮过程中往往伴随DM的降解。本研究中,480 mg·kg-1松针精油减缓了构树发酵过程中DM的降低,这与苜蓿青贮中添加亚麻(Linum usitatissimum)籽精油得到的结果类似24,这是由于松针精油抑制有害微生物增殖,减缓有害微生物对营养物质的分解所致。在青贮过程中牧草CP的损失不可避免,梭菌(Clostridium)等有害微生物将青贮饲料中的蛋白质降解成NH3-N等非蛋白氮,因此NH3-N能反映青贮饲料中蛋白质的降解程度,而NH3-N又会进一步被微生物分解,饲料中的氮元素以氨气等挥发性物质的形式逸失,造成青贮饲料中CP的损失5。故而抑制蛋白质水解是减少牧草CP损失的重要手段。研究发现,植物精油能抑制梭菌等有害微生物的增殖25,并且具有抑制微生物水解蛋白质和氨基酸脱氨的作用26。这一结论已经在大麦(Hordeum vulgare)青贮和野豌豆(Vicia sepinm)、燕麦(Avena sativa)混贮上得到验证27-28。本研究也证实松针精油能降低构树青贮中CP的损失,同时添加松针精油的构树青贮中NH3-N浓度显著降低也印证了这一结果。WSC是影响乳酸产量的重要因素。作为青贮发酵的底物,WSC在青贮过程中被微生物分解。本研究中,WSC含量随着青贮时间的延长呈显著下降趋势。而添加松针精油均显著缓解了构树青贮中WSC的损失,这与添加砂仁精油的构树青贮结果相同29,这是因为精油有效地抑制了有害微生物的活性,减少了WSC消耗。同时青贮饲料中的WSC充分被乳酸菌利用,提高了青贮中乳酸和乙酸的含量,加速了pH降低。本研究中,松针精油显著提高了构树青贮中乳酸和乙酸浓度,降低了构树青贮pH。此外,亚麻籽、肉桂(Cinnamomum cassia)、柠檬(Citrus limon)籽等精油均被发现具有降低青贮饲料pH值的效果30。NDF和ADF含量是反映牧草消化率的重要指标。由于NDF和ADF在青贮过程中不易降解,本研究中,添加各比例松针精油未能显著影响纤维含量。

3.2 松针精油对构树青贮中微生物数量的影响

有研究表明,β-蒎烯和3-蒈烯是松针精油中主要的活性成分,两种物质能破坏微生物细胞膜的完整性,导致细胞内大分子物质向外泄漏,并且能抑制腺嘌呤核苷三磷酸(adenosine triphosphate, ATP)合成,抑制微生物生长31-32。松针精油对梭状芽孢杆菌(Bacillus fusiformis)和串珠镰刀菌(Fusarium moniliforme)的最低抑菌浓度分别为16.45和4.11 mg·mL-1,而松针精油浓度在65.80 mg·mL-1以下对嗜酸乳杆菌(Lactobacillus acidophilus)没有抑制作用26,因此向青贮饲料中添加适量松针精油对乳酸菌生长不会产生抑制。进一步的研究证实,孜然(Cuminum cyminum)精油能增加苜蓿青贮中乳酸菌的数量33。本研究中,各处理组乳酸菌数量在青贮初期迅速增加,并在第7天时达到峰值,而第7天后随着青贮环境中pH的下降乳酸菌数量缓慢减少,且由于酵母菌和霉菌的繁殖受到抑制,减弱了与乳酸菌的竞争,添加松针精油的青贮饲料中乳酸菌数量显著增加,这与以往研究结果一致34

3.3 松针精油对构树青贮有氧稳定性的影响

在实际生产中,青贮饲料有氧暴露是不可避免的。有氧稳定性反映了青贮饲料在有氧暴露条件下保持品质稳定的能力。在有氧条件下,有氧细菌大量繁殖,消耗青贮饲料营养成分并产热,进而导致青贮饲料温度升高。所以温度变化是衡量青贮饲料是否腐败变质的重要指标。有研究表明,柠檬草(Cymbopogon citratus)精油能抑制霉菌和酵母菌的生长,提高甘蔗(Saccharum officinarum)青贮的有氧稳定性35。此外,牛至(Origanum vulgare)精油、肉桂精油和黄梁木(Neolamarckia cadamba)精油均有提高青贮饲料有氧稳定性的报道36-37。本研究中,随着松针精油添加量的增加,有氧暴露后构树青贮的稳定时间显著延长。

4 结论

综上,构树青贮中添加160~480 mg·kg-1松针精油可有效维持青贮酸性环境,减少青贮过程中粗蛋白和可溶性碳水化合物损失,抑制霉菌生长,提高青贮饲料的有氧稳定性;且这一现象呈现剂量依赖性。同时,在480 mg·kg-1添加量下,干物质损失最小。建议生产中可在构树青贮中添加480 mg·kg-1松针精油。

参考文献

[1]

Gong B, Tan L, Hou K, et al. Effects of hybrid Broussonetia papyrifera silage on growth performance, nutrient apparent digestibility and rumen fermentation parameters of fattening dairy bulls. Chinese Journal of Animal Nutrition, 2023, 35(6): 3771-3779.

[2]

宫斌, 檀论, 侯坤, 杂交构树青贮对奶公牛生长性能、营养物质表观消化率和瘤胃发酵参数的影响. 动物营养学报, 2023, 35(6): 3771-3779.

[3]

Si B W, Tao H, Zhang X L, et al. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian-Australasian Journal of Animal Sciences, 2018, 31(8): 1259-1266.

[4]

Zhang S W, Wang X P, Zhang Z H, et al. Effects of Broussonetia papyrifera silage on growth performance, serum biochemical indexes and meat quality of Dorper×Hu crossbred sheep. Acta Prataculturae Sinica, 2021, 30(3): 89-99.

[5]

张生伟, 王小平, 张展海, 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响. 草业学报, 2021, 30(3): 89-99.

[6]

Zhang F F, Guo X Y, Wang X Z. Production, processing, and cultivation techniques of Broussonetia papyrifera. Yanbian: Yanbian University Press, 2022.

[7]

张凡凡, 郭新勇, 王旭哲. 构树的生产加工与栽培技术. 延边: 延边大学出版社, 2022.

[8]

Wu C R, Dai S, Liang L F, et al. Effects of different additives on fermentation quality and protein degradation of Broussonetia papyrifera silage. Acta Prataculturae Sinica, 2021, 30(10): 169-179.

[9]

吴长荣, 代胜, 梁龙飞, 不同添加剂对构树青贮饲料发酵品质和蛋白质降解的影响. 草业学报, 2021, 30(10): 169-179.

[10]

Zhang Y L, Yang H J, Li C C, et al. Effects of different lactic acid bacteria treatments on nutritional quality, fermentation characteristics and aerobic stability of hybrid Broussonetia papyrifera silage. Chinese Journal of Animal Nutrition, 2023, 35(4): 2702-2710.

[11]

张玉琳, 杨寒珺, 李超程, 不同乳酸菌处理对杂交构树青贮营养品质、发酵特性和有氧稳定性的影响. 动物营养学报, 2023, 35(4): 2702-2710.

[12]

Wang Y Z, Zhao Y Q, Wang D, et al. Progress in the study of antibacterial mechanism of plant essential oils from the perspective of multiomics. Food Science, 2024, 45(17): 348-356.

[13]

王亚哲, 赵永强, 王迪, 多组学视角下植物精油抑菌机理的研究进展. 食品科学, 2024, 45(17): 348-356.

[14]

Sharma A, Rajendran S, Srivastava A, et al. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. Journal of Bioscience and Bioengineering, 2017, 123(3): 308-313.

[15]

Gutierrez J, Rodriguez G, Barry-Ryan C, et al. Efficacy of plant essential oils against foodborne pathogens and spoilage bacteria associated with ready-to-eat vegetables: antimicrobial and sensory screening. Journal of Food Protection, 2008, 71(9): 1846-1854.

[16]

Zuo X, Wang C, Chen X Y, et al. Effects of eucalyptus oil and rosemary oil on silage quality of stylo. Chinese Journal of Grassland, 2022, 44(2): 89-97.

[17]

邹璇, 王成, 陈晓阳, 桉叶油和迷迭香油对柱花草青贮品质的影响. 中国草地学报, 2022, 44(2): 89-97.

[18]

Chen Y L, Li M Y, Long J H, et al. The effect of Amomum villosum essential oil on the quality of Broussonetia papyrifera silage. Chinese Journal of Animal Science, 2023, 59(6): 254-258.

[19]

陈玉连, 李茂雅, 龙见华, 砂仁精油对构树青贮品质的影响. 中国畜牧杂志, 2023, 59(6): 254-258.

[20]

Hodjatpanah-Montazeri A, Mesgaran M D, Vakili A. Effect of essential oils of various plants as microbial modifier to alter corn silage fermentation and in vitro methane production. Iranian Journal of Applied Animal Science, 2016, 2(6): 269-276.

[21]

Saab A M, Gambari R, Sacchetti G, et al. Phytochemical and pharmacological properties of essential oils from Cedrus species. Natural Product Research, 2018, 32(12): 1415-1427.

[22]

Sun J Z. Study on the effect of pine needle essential oil on the quality and microorganisms of alfalfa silage. Shihezi: Shihezi University, 2021.

[23]

孙建政. 松针精油对苜蓿青贮品质及微生物的影响研究. 石河子: 石河子大学, 2021.

[24]

Standardization Administration of the People’s Republic of China. Determination of moisture in feedstuffs, GB/T 6435-2014. Beijing: China Standard Press, 2014.

[25]

中国国家标准化管理委员会. 饲料中水分的测定, GB/T 6435-2014. 北京: 中国标准出版社, 2014.

[26]

Standardization Administration of the People’s Republic of China. Determination of crude protein in feeds-Kjeldahl method, GB/T 6432-2018. Beijing: China Standard Press, 2018.

[27]

中国国家标准化管理委员会. 饲料中粗蛋白的测定—凯氏定氮法, GB/T 6432-2018. 北京: 中国标准出版社, 2018.

[28]

Standardization Administration of the People’s Republic of China. Determination of neutral detergent fiber (NDF) in feeds, GB/T 20806-2022. Beijing: China Standard Press, 2022.

[29]

中国国家标准化管理委员会. 饲料中中性洗涤纤维(NDF)的测定, GB/T 20806-2022. 北京: 中国标准出版社, 2022.

[30]

Ministry of Agriculture of the People’s Republic of China. Determination of acid detergent fiber (ADF) in feeds, NY/T 1459-2022. Beijing: China Agriculture Press, 2022.

[31]

中华人民共和国农业农村部. 饲料中酸性洗涤纤维的测定, NY/T 1459-2022. 北京: 中国农业出版社, 2022.

[32]

Zhao J, Yin X J, Wang S R, et al. Effects of storage time on the fermentation quality, bacterial community composition, and functional profile of sweet sorghum silage. Acta Prataculturae Sinica, 2023, 32(8): 164-175.

[33]

赵杰, 尹雪敬, 王思然, 贮藏时间对甜高粱青贮发酵品质、微生物群落组成和功能的影响. 草业学报, 2023, 32(8): 164-175.

[34]

Fu D Q, Jia C Y, Zhang L, et al. Agronomic traits and fermentation quality of maize silage harvested at different grain-development stages in irrigated drought areas of southern Xinjiang. Acta Prataculturae Sinica, 2022, 31(8): 111-125.

[35]

付东青, 贾春英, 张力, 南疆干旱灌溉区青贮玉米农艺性状和发酵品质动态分析及评价. 草业学报, 2022, 31(8): 111-125.

[36]

Xu Q F, Yu Z, Han J G, et al. Determining organic acid in alfalfa silage by HPLO. Grassland and Turf, 2007(2): 63-65.

[37]

许庆方, 玉柱, 韩建国, 高效液相色谱法测定紫花苜蓿青贮中的有机酸. 草原与草坪, 2007(2): 63-65.

[38]

Sun Y C, Chai Y X, Hou G Q, et al. Fermentation quality and in vitro rumen gas production of corn straw wheat straw mixed with whole conformation tree. Acta Agrestia Sinica, 2024, 32(10): 3297-3304.

[39]

孙颖超, 柴雨昕, 侯国庆, 2种秸秆与全株构树混贮发酵品质及瘤胃体外产气特性. 草地学报, 2024, 32(10): 3297-3304.

[40]

Guo X, Wu S, Zheng M Y, et al. Effects of addition of Neolamarckia cadamba leaves and chitosan oligosaccharides on fermentation quality and aerobic stability of sugarcane top silage. Acta Prataculturae Sinica, 2022, 31(6): 202-210.

[41]

郭香, 吴硕, 郑明扬, 添加黄梁木叶和壳寡糖对甘蔗梢青贮饲料发酵品质及有氧稳定性的影响. 草业学报, 2022, 31(6): 202-210.

[42]

Besharati M, Palangi V, Niazifar M, et al. Effect of adding flaxseed essential oil in alfalfa ensiling process on ruminal fermentation kinetics. KSU Journal of Agricultural Nature, 2023, 26(2): 450-458.

[43]

Sun J Z, Wang X N, Sun G J, et al. Effect of pine needle essential oil on the main microorganisms in silage. Feed Industry, 2020, 41(18): 36-41.

[44]

孙建政, 王晓娜, 孙国君, 松针精油对青贮饲料中主要微生物的影响. 饲料工业, 2020, 41(18): 36-41.

[45]

Cardozo P W, Calsamiglia S, Ferret A, et al. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. Journal of Animal Science, 2004, 82(11): 3230-3236.

[46]

Akinci Y, Soycan-Önenc S. The effect of cumin essential oil on the fermentation quality, aerobic stability, and in vitro digestibility of vetch-oat silages. Journal of the Faculty of Agriculture, Ege University, 2021, 58(2): 217-228.

[47]

Chaves A V, Baah J, Wang Y, et al. Effects of cinnamon leaf, oregano and sweet orange essential oils on fermentation and aerobic stability of barley silage. Journal of the Science of Food and Agriculture, 2012, 92(4): 906-915.

[48]

Li M, Fan X, Cheng Q, et al. Effect of Amomum villosum essential oil as an additive on the chemical composition, fermentation quality, and bacterial community of paper mulberry silage. Frontiers in Microbiology, 2022, 13(2): 1-10.

[49]

Besharati M, Palangi V, Niazifar M. Comparison study of flaxseed, cinnamon and lemon seed essential oils additives on quality and fermentation characteristics of lucerne silage. Acta Agriculturae Slovenica, 2020, 115(2): 455-462.

[50]

Liu X, He Y L, Hu Y Y, et al. Primary antibacterial activity and mechanism of 3-carene against the Pseudomonas aeruginosa. Chinese Journal of Tropical Crops, 2019, 40(3): 601-608.

[51]

刘雪, 何英兰, 胡月英, 3-蒈烯对铜绿假单胞菌的抑菌活性及机理初探. 热带作物学报, 2019, 40(3): 601-608.

[52]

He J R, Liu X, Chen W X, et al. Antibacterial activity and mechanism of (-)-β-pinene against Salmonella. Food Science, 2019, 40(1): 44-49.

[53]

何静如, 刘雪, 陈文学, (-)-β-蒎烯对沙门氏菌的抑菌机制. 食品科学, 2019, 40(1): 44-49.

[54]

Turan A, Soycan-Önenc S. Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digetibility of alfalfa silage. Asian-Australasian Journal of Animal Sciences, 2018, 31(8): 1252-1258.

[55]

Li W, Yang M Y, Li S X. Effects of plant essential oil on fermentation quality, microbial quantity and feeding value of alfalfa. China Feed, 2021(16): 50-53.

[56]

李伟, 杨敏一, 李舒心. 植物精油对苜蓿草发酵品质、微生物数量及饲用价值的影响. 中国饲料, 2021(16): 50-53.

[57]

Cantoia J R, Capucho E, Garcia T M, et al. Lemongrass essential oil in sugarcane silage: fermentative profile, losses, chemical composition, and aerobic stability. Animal Feed Science and Technology, 2020(260): 114371.

[58]

Soycan-Önenç S, Koc F, Coşkuntuna L, et al. The effect of oregano and cinnamon essential oils on fermentation quality and aerobic stability of field pea silages. Asian-Australasian Journal of Animal Sciences, 2015, 28(9): 1281-1287.

[59]

Yang D, Wu S, Chen D D, et al. Determination of the active components of essential oil in Neolamarckia cadamba and its effect on the aerobic stabilization of whole plant corn silage. Acta Agrestia Sinica, 2023, 31(9): 2860-2867.

[60]

杨丹, 吴硕, 陈丹丹, 黄梁木精油活性成分测定及其对全株玉米青贮有氧稳定的影响. 草地学报, 2023, 31(9): 2860-2867.

基金资助

南疆重点产业创新发展支撑计划项目(2022DB017)

财政部和农业农村部-国家牧草体系项目(CARS-34)

AI Summary AI Mindmap
PDF (619KB)

306

访问

0

被引

详细

导航
相关文章

AI思维导图

/