氮肥减量配施腐植酸对北疆滴灌玉米田土壤真菌群落的影响
卢小倩 , 陈金露 , 杨卫君 , 郭青云 , 王单丽 , 赵红梅
草业学报 ›› 2025, Vol. 34 ›› Issue (10) : 120 -131.
氮肥减量配施腐植酸对北疆滴灌玉米田土壤真菌群落的影响
Effects of nitrogen fertilizer reduction combined with humic acid on soil fungal communities in drip irrigated maize fields in northern Xinjiang
为研究氮肥减量条件下添加腐植酸对北疆滴灌玉米田土壤真菌群落的影响,探究农田氮肥优化配施途径,采用随机区组试验设计,设置不施氮肥(CK, 0 kg·hm-2)、常规氮肥(T1, 300 kg·hm-2)、单施腐植酸(T2, 90 kg·hm-2)、常规氮肥配施腐植酸(T3)、氮肥减量15%配施腐植酸(T4)和氮肥减量30%配施腐植酸(T5)6个处理。利用 Illumina MiSeq 高通量测序技术,分析不同处理下土壤养分、土壤真菌多样性和群落结构及玉米产量的变化,探讨氮肥减量配施腐植酸对土壤真菌群落和玉米产量的影响。结果表明,与常规氮肥(T1)相比,氮肥减量15%配施腐植酸(T4)和氮肥减量30%配施腐植酸(T5)处理下土壤电导率(EC)显著降低了18.35%和24.85%,土壤碱解氮含量显著提高了32.00%和18.40%,而玉米产量在T4处理下最高,为18038.75 kg·hm-2,但未对土壤真菌群落Alpha和Beta多样性产生显著影响。与单施腐植酸(T2)相比,T4和T5处理下子囊菌门的相对丰度显著提高了21.85%和24.59%,却显著降低了球囊菌门和壶菌门的相对丰度。Pearson相关分析表明,土壤EC值与粪盘菌属极显著正相关,与葡萄球菌属显著负相关,土壤有机质含量与镰刀菌属显著负相关,土壤碱解氮含量与枝孢菌属显著正相关。冗余分析(RDA)显示,土壤速效磷是影响滴灌玉米田真菌门水平群落结构的主要因子,而EC值和碱解氮则显著影响了土壤真菌属水平群落结构。综上,氮肥减量配施腐植酸可通过引起土壤养分的变化,从而影响土壤真菌群落结构,促进有益菌群生长,抑制病原真菌繁殖,对改善土壤微生物环境、维持土壤微生物群落平衡和提高作物产量具有重要意义。
The objective of this study was to evaluate the effect of humic acid addition on soil fungal communities in drip irrigated maize (Zea mays) fields in northern Xinjiang under reduced nitrogen fertilizer supply, and to explore the optimal application of nitrogen fertilizer in farmland. In this study, a randomized block experiment was adopted, and six treatments were set up: No nitrogen fertilizer (CK, 0 kg·ha-1), conventional nitrogen fertilizer (T1, 300 kg·ha-1), humic acid application alone (T2, 90 kg·ha-1), conventional nitrogen fertilizer combined with humic acid (T3), nitrogen fertilizer reduction of 15% combined with humic acid (T4), and nitrogen fertilizer reduction of 30% with humic acid (T5). Illumina MiSeq high-throughput sequencing technology was used to analyze the changes in fungal diversity and community structure under the six different treatments, and to explore the effects of nitrogen fertilizer reduction combined with humic acid application on soil fungal community composition. Supporting data on soil nutrient levels and maize yield were also collected. It was found that the soil electrical conductivity (EC) of T4 and T5 was significantly reduced by 18.35% and 24.85%, respectively, compared with T1, and the soil alkaline hydrolyzable nitrogen content was significantly increased by 32.00% and 18.40%, respectively under the same treatments. The maize yield was highest (18038.75 kg·ha-1) in the T4 treatment; however, the treatments had no significant effects on the soil fungal community Alpha and Beta diversity. With respect to soil fungi, the relative abundance of Ascomycota under T4 and T5 was significantly increased by 21.85% and 24.59%, respectively, compared with T2, but the relative abundance of Mortierellomycota and Chytridiomycota was significantly reduced. Pearson correlation analysis showed that soil conductivity was significantly positively correlated with Ascobolus and negatively correlated with Botryotrichum, while soil organic matter was negatively correlated with Fusarium presence, and soil alkaline hydrolyzable nitrogen was significantly positively correlated with Cladosporum presence. Further redundancy analysis showed that soil available phosphorus was the main environmental factor affecting the community structure of fungi in this drip irrigated maize field, while soil EC value and alkali hydrolyzable nitrogen were the main environmental factors affecting the horizontal community structure of soil fungi. In conclusion, nitrogen fertilizer reduction combined with humic acid changed the soil fungal community structure, promoted the growth of beneficial bacteria, and inhibited the reproduction of pathogenic fungi by causing changes in soil nutrient content. This information is of great significance for improving the soil microbial environment, maintaining the balance of the soil microbial community and increasing crop yield.
corn / nitrogenous fertilizer / humic acid / fungal communities / soil nutrients
| [1] |
Zheng T, Zhou Q X, Ouyang S H. Enhancing function of plant-microbial symbiosis for pollution mitigation and carbon sequestration. Chinese Science Bulletin, 2023, 68(24): 3155-3171. |
| [2] |
郑彤, 周启星, 欧阳少虎. 植物-微生物共生系统功能强化及其在降污固碳中的作用. 科学通报, 2023, 68(24): 3155-3171. |
| [3] |
Schloter M, Dilly O, Munch J. Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment, 2003, 98(1): 255-262. |
| [4] |
Hamonts K, Bissett A, Macdonald C B, et al. Effects of ecological restoration on soil microbial diversity in a temperate grassy woodland. Applied Soil Ecology, 2017, 117/118(9): 117-128. |
| [5] |
Gu X, Ren C M, Li N, et al. Application of humic acid in the protection of black land resources. Humic Acid, 2023, 45(2): 8-11, 42. |
| [6] |
顾鑫, 任翠梅, 李娜, 腐植酸在黑土地资源保护上的应用. 腐植酸, 2023, 45(2): 8-11, 42. |
| [7] |
Daur I, Bakhashwain A A. Effect of humic acid on growth and quality of maize fodder production. Pakistan Journal of Botany, 2013, 45(S1): 21-25. |
| [8] |
Yang W J, Yang M, Guo S, et al. Effects of reducing nitrogen ferilizer combined with biochar on the yield and quality of wheat and carbon sequestration and emission reduction in Northern Xinjiang of China. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(4): 104-111. |
| [9] |
杨卫君, 杨梅, 郭颂, 减氮配施生物炭对北疆小麦产量品质及固碳减排的影响. 农业工程学报, 2024, 40(4): 104-111. |
| [10] |
Lei B K, Liu H B, Chen A Q, et al. Scenario analysis on effects of long-term fertilization on soil carbon and nitrogen codependency. Ecology and Environmental Sciences, 2014, 23(10): 1567-1573. |
| [11] |
雷宝坤, 刘宏斌, 陈安强, 长期定位施肥对土壤的碳氮共济效应情景分析. 生态环境学报, 2014, 23(10): 1567-1573. |
| [12] |
Yu Y J, Xu Q S, Zhang J H, et al. The influence and mechanism of soil fertilization technology on soil health. Soil and Fertilizer Sciences in China, 2024, 61(2): 1-13. |
| [13] |
虞轶俊, 徐青山, 张均华, 土壤培肥技术对土壤健康的影响途径与作用机制. 中国土壤与肥料, 2024, 61(2): 1-13. |
| [14] |
Li Y, Fang F, Wei J L, et al. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific Reports, 2019, 9(1): 12014. |
| [15] |
Zhang W W, Xu J, Dong F S, et al. Responses of microbial community functional diversity to bensulfuron-methyl in paddy soil. Journal of Agro-Environment Science, 2014, 33(9): 1749-1754. |
| [16] |
张雯雯, 徐军, 董丰收, 苄嘧磺隆对水稻田土壤微生物群落功能多样性的影响. 农业环境科学学报, 2014, 33(9): 1749-1754. |
| [17] |
Kong D Y, Xing L W, Wei N, et al. Effects of fertilizer reduction combined with humic acid bio-fertilizer on physicochemical properties and microbial diversity of chernozem. Chinese Journal of Soil Science, 2024, 55(3): 746-757. |
| [18] |
孔德庸, 邢力文, 韦娜, 化肥减量配施腐植酸生物肥对黑钙土理化性质及微生物多样性的影响. 土壤通报, 2024, 55(3): 746-757. |
| [19] |
Chen X G, Kou M, Tang Z H, et al. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer. PLoS One, 2017, 12(12): e0189715. |
| [20] |
Jiang T T, Ren Z X, Liu L, et al. Effects of engineered soil improvement combined with biofertilizer on rhizosphere soil microbial community in replanted apple (Malus domestica). Journal of Agricultural Biotechnology, 2023, 31(6): 1262-1274. |
| [21] |
姜婷婷, 任忠秀, 刘亮, 工程化土壤改良结合生物肥对再植苹果根际土壤微生物群落的影响. 农业生物技术学报, 2023, 31(6): 1262-1274. |
| [22] |
Sun S J, Ma B, Wang Y X, et al. Effects of humic acid on soil nutrients and microbial community structure of greenhouse cucumber rhizosphere under salt stress. Northern Horticulture, 2022, 46(5): 83-90. |
| [23] |
孙世君, 马博, 王逸轩, 腐殖酸对盐胁迫下温室黄瓜根际土壤养分及微生物群落结构的影响. 北方园艺, 2022, 46(5): 83-90. |
| [24] |
Ma M Q, Fan H D, Li H N, et al. Effects of humic acid-containing water-soluble fertilizers on the growth of water spinach and soil nutrient properties. Journal of Environmental Engineering Technology, 2024, 14(5): 1444-1450. |
| [25] |
马梦谦, 樊海丹, 李红娜, 含腐植酸水溶肥对空心菜生长及土壤养分性状的影响. 环境工程技术学报, 2024, 14(5): 1444-1450. |
| [26] |
Bao S D. Analysis of soil agrochemistry. Beijing: China Agriculture Press, 2005. |
| [27] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. |
| [28] |
Wu J B, Qin Z Y, Zheng H X, et al. Effects of fulvic acid application on maize yield under irrigation in sandy loam soil. Journal of Drainage and Irrigation Machinery Engineering, 2024, 42(12): 1272-1279. |
| [29] |
邬佳宾, 秦子元, 郑和祥, 黄腐酸施用对砂壤土灌溉玉米产量的影响. 排灌机械工程学报, 2024, 42(12): 1272-1279. |
| [30] |
Nan Z W, Liu Z, Meng W W, et al. Structure and function of soil fungal community in rotation fallow farmland in alluvial plain of lower Yellow River. Environmental Science, 2023, 44(1): 482-493. |
| [31] |
南镇武, 刘柱, 孟维伟, 黄河下游冲积平原轮作休耕农田土壤真菌群落结构与功能. 环境科学, 2023, 44(1): 482-493. |
| [32] |
Wang L B, Wang Y X. Effects of humic acid fertilizer on soil nutrients and microbial activity. Humic Acid, 2011, 33(4): 6-9. |
| [33] |
王利宾, 王曰鑫. 腐植酸肥对土壤养分与微生物活性的影响. 腐植酸, 2011, 33(4): 6-9. |
| [34] |
Carpenter-Boggs L, Kennedy A C, Reganold J P. Organic and biodynamic management effects on soil biology. Research Gate, 2000, 64(5): 1651-1659. |
| [35] |
Sellamuthu K M, Govindaswamy M. Effect of fertiliser and humic acid on rhizosphere microorganisms and soil enzymes at an early stage of sugarcane growth. Sugar Tech, 2003, 5(4): 273-277. |
| [36] |
Gao H, Fan Z Q, Guo X S, et al. Effects of humic acid on microorganism quantity and diversity in capsicum rhizosphere soil. Shandong Agricultural Sciences, 2021, 53(1): 64-68. |
| [37] |
高涵, 范仲卿, 郭新送, 腐植酸对辣椒根际土壤微生物数量和多样性的影响. 山东农业科学, 2021, 53(1): 64-68. |
| [38] |
Sun S J, Liu Q, Ye Y J, et al. Effects of humic acid on soil nutrients and microbial community structure of cucumber with different continuous cropping years in greenhouse. Journal of Henan Agricultural Sciences, 2022, 51(2): 65-74. |
| [39] |
孙世君, 刘琦, 叶英杰, 腐植酸对不同连作年限温室黄瓜土壤养分和微生物群落结构的影响. 河南农业科学, 2022, 51(2): 65-74. |
| [40] |
Chen X X, Liu X S, Wang S R. Effects of humic acid on soil physicochemical properties, microenvironment and growth of bitter melon under salt stress. Jiangsu Agricultural Sciences, 2023, 51(17): 138-144. |
| [41] |
陈星星, 刘新社, 王盛荣. 腐殖酸对盐胁迫下土壤理化性质、微环境及苦瓜生长的影响. 江苏农业科学, 2023, 51(17): 138-144. |
| [42] |
Li Y, Ao J, Sun Y L, et al. Analysis of fungal community structure and function changes in soil of cucumber continuous cropping in greenhouse. Soil and Fertilizer Sciences in China, 2022, 59(2): 34-41. |
| [43] |
李杨, 敖静, 孙玉禄, 温室黄瓜连作土壤真菌多样性变化分析. 中国土壤与肥料, 2022, 59(2): 34-41. |
| [44] |
Yang L, Zhang Y, Zhong J J, et al. Effects of different acid modulators on the microbial communities in maize planting red soil. Journal of Agro-Environment Science, 2024, 43(3): 609-616. |
| [45] |
杨玲, 张艺, 钟俊杰, 不同调酸剂对种植玉米红壤微生物群落的影响. 农业环境科学学报, 2024, 43(3): 609-616. |
| [46] |
Bastian F, Bouziri L, Nicolardot B, et al. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biology and Biochemistry, 2009, 41(2): 262-275. |
| [47] |
Feng Y Y, Tuo Y F, He X H, et al. The impact of soil physicochemical characteristics of different vegetation types on soil microbial community diversity in Liziping Natural Reserve. Journal of Northeast Forestry University, 2024, 52(10): 95-103. |
| [48] |
冯永钰, 脱云飞, 何霞红, 栗子坪自然保护区不同植被类型土壤理化特性对土壤微生物群落多样性的影响. 东北林业大学学报, 2024, 52(10): 95-103. |
| [49] |
Liu Y C, Wang P, Liu R J, et al. Effects of arbuscular mycorrhizal fungi and biochar on the fertility of continuous watermelon cropping soil. Microbiology China, 2020, 47(11): 3811-3821. |
| [50] |
刘耀臣, 王萍, 刘润进, 丛枝菌根真菌和生物质炭对连作西瓜土壤肥力的影响. 微生物学通报, 2020, 47(11): 3811-3821. |
| [51] |
Shi M F, Guo A X, Kang Y C, et al. Effects of plastic film mulching and legume rotation on soil nutrients and microbial communities in the Loess Plateau of China. Chemical and Biological Technologies in Agriculture, 2023, 10(1): 38-54. |
| [52] |
Xu J Y, He X L, Shao M C, et al. Effects of different planting patterns on microbial community diversity in rhizosphere soil of Trichosanthes kirilowii Maxim. Journal of Southern Agriculture, 2024, 55(4): 920-931. |
| [53] |
徐筋燕, 何晓兰, 邵明灿, 不同种植模式对栝楼根际土壤微生物群落多样性的影响. 南方农业学报, 2024, 55(4): 920-931. |
| [54] |
Beimforde C, Feldberg K, Nylinder S, et al. Estimating the phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Molecular Phylogenetics and Evolution, 2014, 78(9): 386-398. |
| [55] |
Ge Z, Li S Y, Bol R, et al. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition. Soil and Tillage Research, 2021, 213: 105120. |
| [56] |
Zhou L P, Yuan L, Zhao B Q, et al. Advances in humic acid structures and their regulatory role in maize roots. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 334-343. |
| [57] |
周丽平, 袁亮, 赵秉强, 腐植酸的组成结构及其对作物根系调控的研究进展. 植物营养与肥料学报, 2022, 28(2): 334-343. |
| [58] |
Bai X L, Zhang E, Wu J M, et al. Effects of different modified materials on soil fungal community structure in saline-alkali soil. Environmental Science, 2023, 5(26): 1-16. |
| [59] |
白小龙, 张恩, 武晋民, 不同改良物料对盐碱土壤真菌群落结构的影响. 环境科学, 2023, 5(26): 1-16. |
| [60] |
Constancias F, Terrat S, Saby N P, et al. Mapping and determinism of soil microbial community distribution across an agricultural landscape. Microbiology Open, 2015, 4(3): 505-517. |
| [61] |
Lin F, Li Y M, Sun X M, et al. Combined application of humic acid and nitrogen fertilizer affects soil physical and chemical properties. Chinese Agricultural Science Bulletin, 2018, 34(23): 80-85. |
| [62] |
林枫, 李艳梅, 孙笑梅, 腐植酸与氮肥配施对土壤理化性质的影响. 中国农学通报, 2018, 34(23): 80-85. |
| [63] |
Zhang J S, Yu B T, Zhang J F, et al. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 704-711. |
| [64] |
张济世, 于波涛, 张金凤, 不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响. 植物营养与肥料学报, 2017, 23(3): 704-711. |
| [65] |
Gao T G, Yuan H L, Hou H Y, et al. The role of humic acids in nitrogen cycle: A review. Humic Acid, 2020, 42(3): 11-18. |
| [66] |
高同国, 袁红莉, 侯慧云, 腐植酸类物质在氮循环中作用的研究进展. 腐植酸, 2020, 42(3): 11-18. |
| [67] |
Guo J K, Ren Q, Zhao J, et al. Effects of biochar and humic acid on growth and cadmium accumulation in rape. Ecology and Environmental Sciences, 2019, 28(12): 2425-2432. |
| [68] |
郭军康, 任倩, 赵瑾, 生物炭与腐殖酸复配对油菜(Brassica campestris L.)生长与镉累积的影响. 生态环境学报, 2019, 28(12): 2425-2432. |
| [69] |
Hu H Y, Guo W, Wei N, et al. Effects of chemical fertilizer reduction and humic acid application on soil properties, nutrient content and dry matter accumulation of maize plants. Jiangsu Agricultural Sciences, 2024, 52(1): 232-240. |
| [70] |
胡慧影, 郭伟, 韦娜, 化肥减量配施腐殖酸对土壤特性、玉米植株养分含量及其干物质积累的影响. 江苏农业科学, 2024, 52(1): 232-240. |
| [71] |
Zhang H S, Wu X, Li G, et al. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biology and Fertility of Soils, 2011, 47(5): 543-554. |
| [72] |
Zhang X, Chen T, Niu Y H, et al. Research on diversity of fungi community in rhizosphere soil of six halophytes in Ebinur Lake Wetland. Acta Microbiologica Sinica, 2021, 61(12): 3965-3976. |
| [73] |
张雪, 陈婷, 牛艳慧, Illumina高通量测序揭示艾比湖湿地6种盐生植物根际土壤真菌群落组成及多样性. 微生物学报, 2021, 61(12): 3965-3976. |
| [74] |
Ji L F, Ni K, Ma L F, et al. Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil. Acta Ecologica Sinica, 2018, 38(22): 8158-8166. |
| [75] |
季凌飞, 倪康, 马立锋, 不同施肥方式对酸性茶园土壤真菌群落的影响. 生态学报, 2018, 38(22): 8158-8166. |
| [76] |
Yang K, Du Y Q, Zhang X X, et al. Effects of different organic materials combined with chemical fertilizers on soil fungal community structure and ecological function. Soils, 2024, 56(1): 222-228. |
| [77] |
杨凯, 杜延全, 张西兴, 不同有机物料与化肥配施对土壤真菌群落结构和生态功能的影响. 土壤, 2024, 56(1): 222-228. |
| [78] |
Chen W B, Yu L Y, Sun F R, et al. Brief description of the effects of humic acid and soil fertility on the yield and quality of flue-cured tobacco. Humic Acid, 2024, 46(6): 53-59. |
| [79] |
陈文博, 于林燚, 孙福仁, 简述腐植酸与土壤肥力对烤烟产质量的影响. 腐植酸, 2024, 46(6): 53-59. |
自治区“三农”骨干人才培养项目(2024SNGGGCC020)
新疆土壤与植物生态过程重点实验室资助项目(23XJTRZW10)
自治区天山英才-青年拔尖人才项目(2023TSYCCX0085)
/
| 〈 |
|
〉 |