内蒙古典型草原和荒漠草原土壤固碳微生物组成及其固碳途径差异分析
彭浩 , 董宝珠 , 马利娟 , 于晓东 , 张艺帆 , 李晓芳
草业学报 ›› 2025, Vol. 34 ›› Issue (08) : 123 -131.
内蒙古典型草原和荒漠草原土壤固碳微生物组成及其固碳途径差异分析
Composition and carbon-fixation pathways of carbon-fixing microorganisms in soils of a typical steppe and desert steppe in Inner Mongolia
土壤中自养微生物可以同化大气CO2并将碳固定于土壤中。与湿润区生态系统相比,干旱区土壤微生物固碳的相对贡献更大。但当前碳评估模型主要研究植物固碳,往往忽略了土壤微生物的固碳代谢,这不利于全面了解干旱区生态系统碳汇特征。本研究以内蒙古典型草原和荒漠草原的土壤微生物为对象,剖析了土壤中固碳微生物群落组成和固碳途径的差异。研究结果显示:1)两种类型草原土壤中共有14个固碳微生物类群(纲),其中酸微菌纲、γ‐变形菌纲和绿弯菌纲在荒漠草原土壤中的丰度显著高于典型草原;2)还原柠檬酸循环(rTCA)和3-羟基丙酸循环(3-HP)相对丰度在荒漠草原土壤中显著高于典型草原;3)rTCA途径关键酶EC(1.2.7.1)和EC(1.2.7.3)、3-HP途径关键酶EC(6.4.1.2)和EC(6.4.1.3)的编码基因丰度在荒漠草原土壤中高于典型草原。显然,内蒙古荒漠草原土壤固碳微生物(纲)、固碳途径及其编码关键酶基因丰度都高于典型草原,由此表明荒漠草原土壤固碳微生物具有更强的大气CO2固定潜力。
Autotrophic soil microbes can assimilate atmospheric CO2 and fix carbon into the soil. The relative contributions of soil microorganisms to carbon fixation are greater in arid regions than in humid ecosystems. However, current carbon-fixation models mainly focus on plant functions and often neglect the roles of soil autotrophs. Therefore, such models cannot accurately predict carbon sequestration in the soil of arid ecosystems. In this study, we focused on the soil microorganisms of the typical steppe and desert steppe in Inner Mongolia, and analyzed differences in the composition and metabolic pathways of carbon-fixing microbial communities in those soils. The main results were as follows: 1) There were 14 carbon-fixing microbial groups (classes) in soils of both categories of steppe, among which Acidimicrobiia, γ-Proteobacteria, and Chloroflexi showed significantly higher abundance in the desert steppe soil than in the typical steppe soil; 2) The relative abundance of genes related to the reductive citric acid (rTCA) cycle and the 3-hydroxypropionate (3-HP) cycle was significantly higher in the desert steppe soil than in the typical steppe soil; 3) The abundance of genes encoding key enzymes in the rTCA pathway [EC (1.2.7.1) and EC (1.2.7.3)] and the 3-HP pathway [EC (6.4.1.2) and EC (6.4.1.3)] was higher in the desert steppe soil than in the typical steppe soil. Clearly, the abundance of carbon-fixing microorganism classes, carbon-fixation pathways, and genes encoding their key enzymes was higher in the desert steppe soil of Inner Mongolia than in the typical steppe soil, indicating that the desert steppe soil microorganisms have stronger potential for atmospheric CO2 fixation.
草原土壤 / 固碳微生物 / 固碳途径 / 宏基因组 / 相对丰度
grassland soil / carbon-fixing microorganisms / carbon-fixation pathways / metagenomics / relative abundance
| [1] |
Jiang P, Xiao L Q, Wan X, et al. Research progress on microbial carbon sequestration in soil: a review. Eurasian Soil Science, 2022, 55(10): 1395-1404. |
| [2] |
Kroth P G. The biodiversity of carbon assimilation. Journal of Plant Physiology, 2015, 172: 76-81. |
| [3] |
Lynn T M, Ge T, Yuan H Z, et al. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microbial Ecology, 2017, 73(3): 645-657. |
| [4] |
Zhao K, Kong W D, Wang F, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biology and Biochemistry, 2018, 127(1): 230-238. |
| [5] |
Chen H, Wang F, Kong W D, et al. Soil microbial CO2 fixation plays a significant role in terrestrial carbon sink in a dryland ecosystem: A four-year small-scale field-plot observation on the Tibetan Plateau. Science of the Total Environment, 2021, 761: 143282. |
| [6] |
Yang Z G, Zhang J G, Li J R, et al. Spatiotemporal dynamic variation of temperate grassland classes in Inner Mongolia in the last 20 years. Acta Prataculturae Sinica, 2023, 32(9): 1-16. |
| [7] |
杨志贵, 张建国, 李锦荣, 内蒙古温性草原草地类型近20年时空动态变化研究. 草业学报, 2023, 32(9): 1-16. |
| [8] |
Yuan H Z, Ge T, Chen C Y, et al. Significant role for microbial autotrophy in the sequestration of soil carbon. Applied and Environmental Microbiology, 2012, 78(7): 2328-2336. |
| [9] |
Sarfraz H, Zhang M, Zhu X X, et al. Significance of Fe(Ⅱ) and environmental factors on carbon-fixing bacterial community in two paddy soils. Ecotoxicology and Environmental Safety, 2019, 182: 109456. |
| [10] |
Wu X H, Ge T, Yuan H Z, et al. Changes in bacterial CO2 fixation with depth in agricultural soils. Applied Microbiology and Biotechnology, 2014, 98: 2309-2319. |
| [11] |
Gao J, Muhanmmad S, Yue L Y, et al. Changes in CO2-fixing microbial community characteristics with elevation and season in alpine meadow soils on the northern Tibetan Plateau. Acta Ecologica Sinica, 2018, 38(11): 3816-3824. |
| [12] |
高静, Said Muhanmmad, 岳琳艳, 藏北高原草甸土壤固碳微生物群落特征随海拔和季节的变化. 生态学报, 2018, 38(11): 3816-3824. |
| [13] |
Liu Z, Sun Y F, Zhang Y Q, et al. Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert. Soil Biology and Biochemistry, 2018, 125: 156-166. |
| [14] |
Mi Y, Guo R, Wang Y, et al. Responses of soil bacterial and fungal communities to precipitation in the desert steppe ecosystem of Ningxia. Acta Prataculturae Sinica, 2023, 32(11): 81-92. |
| [15] |
米扬, 郭蓉, 王媛, 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应. 草业学报, 2023, 32(11): 81-92. |
| [16] |
Li J Y, Jin X Y, Zhang X C, et al. Comparative metagenomics of two distinct biological soil crusts in the Tengger Desert, China. Soil Biology and Biochemistry, 2020, 140: 107637. |
| [17] |
Okyay T O, Nguyen H N, Castro S L, et al. CO2 sequestration by ureolytic microbial consortia through microbially-induced calcite precipitation. Science of the Total Environment, 2016, 572(1): 671-680. |
| [18] |
Belnap J. The world at your feet: Desert biological soil crusts. Frontiers in Ecology and the Environment, 2003, 1(5): 181-189. |
| [19] |
Ma W H, Han M, Lin X, et al. Carbon storage in vegetation of grasslands in Inner Mongolia. Journal of Arid Land Resources and Environment, 2006, 20(3): 192-195. |
| [20] |
马文红, 韩梅, 林鑫, 内蒙古温带草地植被的碳储量.干旱区资源与环境, 2006, 20(3): 192-195. |
| [21] |
Bai Y F, Wu J G, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 2008, 89(8): 2140-2153. |
| [22] |
Chen X J, Wu X H, Jian Y, et al. Carbon dioxide assimilation potential, functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils. Environmental Science, 2014, 35(3): 1144-1150. |
| [23] |
陈晓娟, 吴小红, 简燕, 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析. 环境科学, 2014, 35(3): 1144-1150. |
| [24] |
Liu Y Y, Wang S, Li S Z, et al. Advances in molecular ecology on microbial functional genes of carbon cycle. Microbiology China, 2017, 44(7): 1676-1689. |
| [25] |
刘洋荧, 王尚, 厉舒祯, 基于功能基因的微生物碳循环分子生态学研究进展. 微生物学通报, 2017, 44(7): 1676-1689. |
| [26] |
Garritano A N, Song W, Thomas T. Carbon fixation pathways across the bacterial and archaeal tree of life. PNAS Nexus, 2022, 1(5): 1-12. |
| [27] |
Correa S S, Schultz J, Lauersen K J, et al. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. Journal of Advanced Research, 2023, 47(Suppl C): 75-92. |
| [28] |
Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15684-15689. |
| [29] |
Wiseschart A, Mhuantong W, Tangphatsornruang S, et al. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiology, 2019, 19(1): 144. |
| [30] |
Huang Q, Huang Y, Wang B, et al. Metabolic pathways of CO2 fixing microorganisms determined C-fixation rates in grassland soils along the precipitation gradient. Soil Biology and Biochemistry, 2022, 172: 108764. |
| [31] |
Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany, 2012, 63(6): 2325-2342. |
| [32] |
Claassens N J, Sousa D Z, Dos Santos V A P M, et al. Harnessing the power of microbial autotrophy. Natural Reviews Microbiology, 2016, 14(11): 692-706. |
| [33] |
Long X E, Yao H Y, Wang J, et al. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils. Environmental Science & Technology, 2015, 49(12): 7152-7160. |
| [34] |
Nowak M E, Beulig F, von Fischer J, et al. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette. Biogeosciences, 2015, 12(3): 7169-7183. |
| [35] |
Liu Z. Microbial pathways of atmospheric carbon dioxide fixation in soils in the Mu Us Desert. Beijing: Beijing Forestry University, 2019. |
| [36] |
刘振. 毛乌素沙地土壤固定大气二氧化碳的微生物途径. 北京: 北京林业大学, 2019. |
| [37] |
Sun Y Q. Community structure of microorganisms in lichen crusts and its function on carbon sequestration in the Mu Us Desert. Beijing: Beijing Forestry University, 2019. |
| [38] |
孙永琦. 毛乌素沙地地衣结皮层微生物的群落结构及其固碳功能. 北京: 北京林业大学, 2019. |
| [39] |
Evans M C, Buchanan B B, Arnon D I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences of the United States of America, 1966, 55(4): 928-934. |
| [40] |
Hall J R, Mitchell K R, Jackson-Weaver O, et al. Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Applied and Environmental Microbiology, 2008, 74(15): 4910-4922. |
| [41] |
Gao L, Liu L, Lv A P, et al. Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake. The ISME Journal, 2024, 18(1), doi:https://doi.org/10.1093/ismejo/wrae147. |
| [42] |
Zarzycki J, Brecht V, Müller M, et al. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21317-21322. |
| [43] |
Rao M P N, Luo Z H, Dong Z Y, et al. Metagenomic analysis further extends the role of Chloroflexi in fundamental biogeochemical cycles. Environmental Research, 2022, 209(Suppl C): 112888. |
| [44] |
Atomi H. Microbial enzymes involved in carbon dioxide fixation. Journal of Bioscience and Bioengineering, 2002, 94(6): 497-505. |
国家自然科学基金(3206140110)
教育部人文社会科学研究规划基金(20YJA790058)
内蒙古自治区直属高校基本科研业务费项目(NCYWT25063)
/
| 〈 |
|
〉 |