盐胁迫下外源ABA对红豆草幼苗生长与生理特性的影响
田戈 , 南丽丽 , 王利群 , 马香香 , 何蓉 , 郭佳雨
草业学报 ›› 2025, Vol. 34 ›› Issue (10) : 95 -106.
盐胁迫下外源ABA对红豆草幼苗生长与生理特性的影响
Effects of exogenous ABA on growth and physiological characteristics of sainfoin seedlings under NaCl stress
土壤盐渍化是限制植物营养吸收和生长发育的重要因素。红豆草是我国盐碱地区的乡土草种,外源脱落酸(ABA)在提高植物抗逆性方面起着积极的调控作用。为探究外源ABA对盐胁迫下红豆草幼苗生长和生理特性的影响,本试验采用营养液砂培法,在0.8%NaCl处理下,对耐盐(‘GH’、‘GN’、‘1994’)和敏盐(‘10295’、‘2323-2’、‘2668’)红豆草幼苗叶面喷施不同浓度的ABA,即设置1个对照组CK和4个处理组:0.8% NaCl(T1)、0.8% NaCl+0.1 mmol·L-1 ABA(T2)、0.8% NaCl+0.2 mmol·L-1 ABA(T3)、0.8% NaCl+0.3 mmol·L-1 ABA(T4),筛选出缓解盐胁迫的最佳ABA缓释浓度。结果表明:ABA对盐胁迫有缓解效应,能显著提高盐胁迫下红豆草幼苗的株高、叶面积、地上生物量、地下生物量、叶片相对含水量、根系活力、K+含量、叶片与根系赤霉素和玉米素及叶片生长素(IAA)含量,耐盐材料‘GH’的变化较显著,相较于0.8% NaCl处理,T3处理下其株高、叶面积、地上生物量、地下生物量、叶片相对含水量、根系活力、K+含量、叶片与根系赤霉素和玉米素及叶片生长素(IAA)含量分别上升了20.48%、4.63%、26.75%、56.66%、28.19%、65.41%、24.36%、47.55%、36.05%、24.39%、80.53%和19.20%;能降低丙二醛含量、超氧化物歧化酶活性、过氧化物酶活性、过氧化氢酶活性、Na+含量、Ca2+含量、叶片与根系ABA及根系IAA含量,敏盐材料‘10295’变化较不明显,相较于0.8% NaCl处理,T3处理下其丙二醛含量、超氧化物歧化酶活性、过氧化物酶活性、过氧化氢酶活性、Na+含量、Ca2+含量、叶片与根系ABA及根系IAA含量分别下降了14.91%、18.64%、26.15%、10.08%、24.47%、30.24%、8.72%、27.64%和30.87%。研究表明外源ABA可以减弱盐胁迫对细胞的氧化损伤,维持细胞膜系统的完整性和细胞渗透压,并以0.2 mmol·L-1 ABA效果最佳,且耐盐材料对ABA的响应比敏盐材料更显著。
Soil salinization is a significant factor that limits plant nutrient uptake and affects plant growth and development. Sainfoin (Onobrychis viciifolia) is a native fabaceae species in saline-alkali regions of China, and exogenous abscisic acid (ABA) plays a positive regulatory role in enhancing plant stress resistance. This study investigates the effects of exogenous ABA on the growth and physiological characteristics of sainfoin seedlings subjected to salt stress. Using a nutrient solution sand culture method, various concentrations of ABA were sprayed on the leaves of both salt-tolerant (‘GH’, ‘GN’, ‘1994’) and salt-sensitive (‘10295’, ‘2323-2’, ‘2668’) sainfoin seedlings under a 0.8% NaCl treatment. Specifically, one control group (CK) and four treatment groups were established: 0.8% NaCl (T1), 0.8% NaCl+0.1 mmol·L-1 ABA (T2), 0.8% NaCl+0.2 mmol·L-1 ABA (T3) and 0.8% NaCl+0.3 mmol·L-1 ABA (T4). The optimal concentration of ABA for alleviating salt stress was identified. The results indicate that ABA has a mitigating effect on salt stress. That plant height, leaf area, aboveground biomass, underground biomass, relative leaf water contents, root activity, K+ contents, gibberellin contents in leaves and roots, zeatin contents in leaves and roots and auxin (IAA) contents in leaves decreased with increasing salt stress. The changes in the salt-tolerant material ‘GH’ were quite significant. The plant height increased by 20.48%, while the leaf area increased by 4.63%; Additionally, the aboveground biomass saw an increase of 26.75%, and the underground biomass increased significantly by 56.66%; The relative leaf water content rose by 28.19%, and root activity experienced a substantial increase of 65.41%. Furthermore, K+ content increased by 24.36%, leaf gibberellin content rose by 47.55%, and root gibberellin content increased by 36.05%; The leaf zeatin content increased by 24.39%, while leaf zeatin saw a notable rise of 80.53%, and leaf IAA content increased by 19.20%, respectively, in 0.8% NaCl, compared to control. Additionally, malonaldehyde contents, superoxide dismutase activity, peroxidase activity, catalase activity, Na+ contents, Ca2+ contents, ABA contents in leaves and roots and IAA contents in roots were reduced in response to salt. The changes in the salt-sensitive material ‘10295’ were relatively insignificant, with malonaldehyde contents, superoxide dismutase activity, peroxidase activity, catalase activity, Na+ contents, Ca2+ contents, ABA contents in leaves, ABA contents in roots and IAA contents in roots increasing by 14.91%, 18.64%, 26.15%, 10.08%, 24.47%, 30.24%, 8.72%, 27.64%, and 30.87%, respectively, in 0.8% NaCl stress. These results indicate that exogenous ABA can mitigate oxidative damage to cells caused by salt stress, maintaining the integrity of the cell membrane system and cell osmotic pressure. In this study, 0.2 mmol·L-1 ABA demonstrated the most effective results, with a more pronounced response observed in salt-tolerant materials compared to salt-sensitive materials.
sainfoin / salt stress / abscisic acid / endogenous hormones
| [1] |
Zhou H P, Shi H F, Yang Y Q, et al. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 2024, 51(1): 16-34. |
| [2] |
Yang J S, Yao R J, Wang X P, et al. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedologica Sinica, 2022, 59(1): 10-27. |
| [3] |
杨劲松, 姚荣江, 王相平, 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27. |
| [4] |
Hu Y, Yang F, Yang N, et al. Analysis and prospects of saline-alkali land in China from the perspective of utilization. Chinese Journal of Soil Science, 2023, 54(2): 489-494. |
| [5] |
胡炎, 杨帆, 杨宁, 盐碱地资源分析及利用研究展望. 土壤通报, 2023, 54(2): 489-494. |
| [6] |
Nan L L, Guo Q E, Cao S Y. Archaeal community diversity in different types of saline-alkali soil in arid regions of Northwest China. Journal of Bioscience and Bioengineering, 2020, 130(4): 382-389. |
| [7] |
Huang H J, Zhang Y Q, Du W X, et al. Research progress on germplasm resources of sainfoin (Onobrychis viciaefolia). Acta Agrestia Sinica, 2024, 32(8): 2346-2356. |
| [8] |
黄海军, 张雨琪, 杜文宣, 红豆草种质资源研究进展. 草地学报, 2024, 32(8): 2346-2356. |
| [9] |
Kumar S, Li G J, Yang J J, et al. Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in Plant Science, 2021, 12: 660409. |
| [10] |
Liu X, Wang K, Liang P F, et al. Screening and comprehensive evaluation of salt tolerant germplasm of sainfoin at seedling stage. Southwest China Journal of Agricultural Sciences, 2022, 35(9): 2171-2179. |
| [11] |
刘鑫, 汪堃, 梁鹏飞, 红豆草苗期耐盐种质筛选及综合评价. 西南农业学报, 2022, 35(9): 2171-2179. |
| [12] |
Wu G Q, Jia S, Liu H L, et al. Effect of salt stress on growth, ion accumulation, and distribution in sainfoins seedlings. Pratacultural Science, 2017, 34(8): 1661-1668. |
| [13] |
伍国强, 贾姝, 刘海龙, 盐胁迫对红豆草幼苗生长和离子积累及分配的影响. 草业科学, 2017, 34(8): 1661-1668. |
| [14] |
Yu Z P, Duan X B, Luo L, et al. How plant hormones mediate salt stress responses. Trends in Plant Science, 2020, 25(11): 1117-1130. |
| [15] |
Wang J T, Sa D W, Shao L H, et al. Optimizing agricultural structure and accelerating the development of the forage industry. Acta Prataculturae Sinica, 2025, 34(2): 211-220. |
| [16] |
王加亭, 撒多文, 邵麟惠, 调整优化农业结构,加快饲草产业发展. 草业学报, 2025, 34(2): 211-220. |
| [17] |
Xiang H T, Zheng D F, He N, et al. Research progress on the physiological response of plants to low temperature and the amelioration effcectiveness of exogenous ABA. Acta Prataculturae Sinica, 2021, 30(1): 208-219. |
| [18] |
项洪涛, 郑殿峰, 何宁, 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展. 草业学报, 2021, 30(1): 208-219. |
| [19] |
Chen K, Li G J, Bressan R A, et al. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62(1): 25-54. |
| [20] |
Ma X L, Wang W Y, Zhou H K, et al. Effect of soaking exogenous abscisic acid on Onobrychis viciaefolia seed germination and physiological mechanism under drought stress. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1882-1890. |
| [21] |
马晓兰, 王文颖, 周华坤, 外源ABA对干旱胁迫下红豆草种子萌发及幼苗生理生化特性的影响. 中国生态农业学报, 2024, 32(11): 1882-1890. |
| [22] |
Zhang Y, Chen H, Wang G P. Alleviating effects of exogenous ABA on Catalpa bungei seedlings under NaCl stress and growth physiological response characteristics. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(6): 996-1005. |
| [23] |
张钰, 陈慧, 王改萍. 外源ABA对楸树幼苗NaCl胁迫的缓解效应及其生长生理响应特征. 西北植物学报, 2023, 43(6): 996-1005. |
| [24] |
Zhang Z L, Liu X, Nan L L, et al. Effects of exogenous salicylic acid on sainfoin growth and physiological characteristics under sodium chloride stress. Chinese Journal of Grassland, 2024, 46(2): 92-100. |
| [25] |
张泽龙, 刘鑫, 南丽丽, 外源SA对NaCl胁迫下红豆草生长和生理特性的影响. 中国草地学报, 2024, 46(2): 92-100. |
| [26] |
Zou Q. Experimental guidance of plant physiology. Beijing: China Agriculture Press, 2003: 110-174. |
| [27] |
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2003: 110-174. |
| [28] |
Zou D T, Guo W, Sun J, et al. Principal component analysis and comprehensive evaluation of salt tolerance related traits in different rice (Oryza sativa L.) genotypes. Journal of Northeast Agricultural University, 2018, 49(8): 1-9. |
| [29] |
邹德堂, 郭微, 孙健, 水稻不同基因型耐盐相关性状主成分分析及综合评价. 东北农业大学学报, 2018, 49(8): 1-9. |
| [30] |
Shanab A A W, Elshobary E M, Czubacka A, et al. Improvement of salt tolerance in Vicia faba (L.) seedlings: a comprehensive investigation of the effects of exogenous calcium chloride. BMC Plant Biology, 2025, 25(1): 200. |
| [31] |
Wang K, Nan L L, Li J F, et al. Effects of drought stress on endogenous hormone contents of different root-type alfalfa. Agricultural Research in the Arid Areas, 2022, 40(3): 30-36. |
| [32] |
汪堃, 南丽丽, 李景峰, 干旱胁迫对不同根型苜蓿内源激素含量的影响. 干旱地区农业研究, 2022, 40(3): 30-36. |
| [33] |
Yu Y Z, Wang R J, Long S, et al. Effects of S-ABA on photosynthesis characteristic of Elymus nutans under combined stress of low temperature and drought. Acta Agrestia Sinica, 2025, 33(5): 1418-1424. |
| [34] |
余易泽, 王芮嘉, 龙思, S-诱抗素对低温干旱复合胁迫下垂穗披碱草光合特征的影响. 草地学报, 2025, 33(5): 1418-1424. |
| [35] |
Liang H Y, Li X K, Wang G P, et al. Physiological effects of exogenous methyl jasmonate on jujube seedlings under salt stress. Acta Botanica Boreali-Occidentalia Sinica. [2024-12-28]. http://kns.cnki.net/kcms/detail/61.1091.Q.20241231.1418.006.html. |
| [36] |
梁含云, 李先宽, 王广苹, 外源茉莉酸甲酯对盐胁迫酸枣幼苗的生理影响. 西北植被学报. [2024-12-28]. http://kns.cnki.net/kcms/detail/61.1091.Q.20241231.1418.006.html. |
| [37] |
Tang H, Hu Y Y, Yu W W, et al. Growth, photosynthetic and physiological responses of Torreya grandis seedlings to varied light environments. Trees, 2015, 29(4): 1011-1022. |
| [38] |
Wang F, Wang T B, Li P D. Protective effects of exogenous ABA on oxidative damage in maize seedlings under drought stress. Pratacultural Science, 2019, 36(11): 2887-2894. |
| [39] |
王芳, 王铁兵, 李鹏德. 外源ABA对干旱胁迫下玉米幼苗氧化损伤的保护作用. 草业科学, 2019, 36(11): 2887-2894. |
| [40] |
Zhang X, Kong X, Li Y, et al. Effect of exogenous ABA on the canopy temperature and accumulation and distribution of photoassimilates in wheat under drought conditions. Journal of Triticeae Crops, 2019, 39(9): 1080-1094. |
| [41] |
张鑫, 孔祥, 李勇, 外源ABA对干旱条件下小麦冠层温度及光合同化物积累与分配的调控效应. 麦类作物学报, 2019, 39(9): 1080-1094. |
| [42] |
Wu K L, Zhou X, Liu L, et al. Regulation of agronomic traits and yield composition of rice in coastal saline-alkali land by exogenous ABA. Hybrid Rice, 2024, 39(5): 97-106. |
| [43] |
吴鹍伦, 周行, 刘琅, 外源ABA对滨海盐碱地水稻农艺性状与产量构成的调控. 杂交水稻, 2024, 39(5): 97-106. |
| [44] |
Han C N, Chen G J, Zheng D F, et al. Transcriptomic and metabolomic analyses reveal that ABA increases the salt tolerance of rice significantly correlated with jasmonic acid biosynthesis and flavonoid biosynthesis. Scientific Reports, 2023, 13(1): 20365. |
| [45] |
Liu X T, Shi F L, Ye W X. Analysis of antioxidant characteristics of exogenous inositol on Poa pratensis L. in response to drought stress. Acta Agrestia Sinica, 2024, 32(8): 2584-2591. |
| [46] |
刘雪婷, 石凤翎, 叶文兴. 喷施外源肌醇对草地早熟禾响应干旱胁迫的抗氧化特性分析. 草地学报, 2024, 32(8): 2584-2591. |
| [47] |
Wu G Q, Li H, Lei C R, et al. Effects of additional KCl on growth and physiological characteristics of sainfoin (Onobrychis viciaefoia) under high salt stress. Acta Prataculturae Sinica, 2019, 28(6): 45-55. |
| [48] |
伍国强, 李辉, 雷彩荣, 添加KCl对高盐胁迫下红豆草生长及生理特性的影响. 草业学报, 2019, 28(6): 45-55. |
| [49] |
Zhang Y, Jiang W J, Yu H J, et al. Exogenous abscisic acid alleviates low temperature-induced oxidative damage in seedlings of Cucumis sativus L. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(S2): 221-228. |
| [50] |
张颖, 蒋卫杰, 余宏军, 外源ABA缓解黄瓜幼苗中低温诱导的氧化损伤. 农业工程学报, 2012, 28(S2): 221-228. |
| [51] |
Li W T, Ning P, Wang F, et al. Effects of exogenous abscisic acid (ABA) on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress. Chinese Journal of Applied Ecology, 2020, 31(5): 1543-1550. |
| [52] |
李琬婷, 宁朋, 王菲, 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响. 应用生态学报, 2020, 31(5): 1543-1550. |
| [53] |
Zhang S Y, Cui B W, Wang J L, et al. Research progress on physiological and molecular responses of plant roots under abiotic stress. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2391-2401. |
| [54] |
张思懿, 崔博文, 王佳玲, 非生物胁迫下植物根系的生理与分子响应研究进展. 浙江农业学报, 2024, 36(10): 2391-2401. |
| [55] |
Liu H, Song S B, Zhang H, et al. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. International Journal of Molecular Sciences, 2022, 23(23): 14824. |
| [56] |
Paheli M, Debasis C. Adaptation of plants to salt stress: the role of the ion transporters. Journal of Plant Biochemistry and Biotechnology, 2021, 30(4): 668-683. |
| [57] |
Shan G L, Ma Z Y, Li J Y, et al. Effects of Euphorbia jolkinii on physiology and endogenous hormone content of alfalfa seedlings. Acta Prataculturae Sinica, 2023, 32(10): 153-161. |
| [58] |
单贵莲, 马祖艳, 李嘉懿, 大狼毒对紫花苜蓿幼苗生理及内源激素含量的影响. 草业学报, 2023, 32(10): 153-161. |
| [59] |
Xu W, Cao F X, Li M, et al. Research on the changes of endogenous hormones in the development of Davidia involucrata bracts. Journal of Central South University of Forestry & Technology, 2017, 37(11): 103-109. |
| [60] |
胥雯, 曹福祥, 李萌, 珙桐苞片发育过程中内源激素的变化特征. 中南林业科技大学学报, 2017, 37(11): 103-109. |
| [61] |
Song J X, Lv J, Zong X F, et al. Effects of ALA application on plant growth, hormone levels, and transcriptome in Leymus chinensis under drought stress. Acta Prataculturae Sinica, 2018, 27(7): 73-83. |
| [62] |
宋吉轩, 吕俊, 宗学凤, 干旱胁迫下ALA对羊草生长、内源激素及转录组的影响. 草业学报, 2018, 27(7): 73-83. |
| [63] |
Hao J Q, Meng F, Li X, et al. Chitosan promotes root hair growth and endogenous IAA accumulation in root tips of vegetable soybean under NaCl stress. Journal of Plant Nutrition and Fertilizers, 2023, 29(9): 1689-1699. |
| [64] |
郝佳奇, 孟飞, 李星, NaCl胁迫下壳聚糖促进菜用大豆根毛生长和根尖内源IAA积累的机理. 植物营养与肥料学报, 2023, 29(9): 1689-1699. |
| [65] |
Wang C H, Wang H, Li P X, et al. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis. The Plant Journal: For Cell and Molecular Biology, 2020, 104(1): 241-251. |
| [66] |
Liu F, Liu Q, Wu H J, et al. Arabidopsis calcineurin B-like-interacting protein kinase 8 and its functional homolog in tomato negatively regulates ABA-mediated stomatal movement and drought tolerance. Plant, Cell & Environment, 2024, 47(7): 2396-2409. |
| [67] |
Hu P W, Huang T P, Li M J, et al. Research progress on abscisic acid biosynthesis and signaling regulation. Chinese Bulletin of Life Sciences, 2015, 27(9): 1193-1196. |
| [68] |
胡鹏伟, 黄桃鹏, 李媚娟, 脱落酸的生物合成和信号调控进展. 生命科学, 2015, 27(9): 1193-1196. |
国家自然科学基金(32360339)
财政部和农业农村部国家现代农业产业技术体系(CARS-34)
/
| 〈 |
|
〉 |