中华根瘤菌株QL2与不同紫花苜蓿品种共生效应的差异
韩宜霖 , 康文娟 , 师尚礼 , 杜媛媛 , 何富强 , 汪艳 , 侯文璐 , 谢西琳
草业学报 ›› 2025, Vol. 34 ›› Issue (10) : 132 -150.
中华根瘤菌株QL2与不同紫花苜蓿品种共生效应的差异
Studies of the difference in symbiotic interaction between Sinorhizobium meliloti strain QL2 and different alfalfa varieties
为明确中华根瘤菌株QL2共生不同紫花苜蓿品种的固氮效应差异特征,提高紫花苜蓿的结瘤固氮能力和天然氮素利用效率。以中华根瘤菌QL2和8个紫花苜蓿 [3个国外引进品种(WL168HQ、WL298HQ和WL319HQ)、我国3个育成品种(甘农3号、甘农5号和甘农9号)及2个地方品种(清水苜蓿和陇中苜蓿)]为材料,通过结瘤、固氮、饲草生物量和营养品质等指标,研究接种QL2后在共生、固氮和促生效应等方面的差异特征。结果表明:接种根瘤菌QL2后,我国育成型紫花苜蓿品种的有效根瘤单颗重、根瘤直径以及根瘤组织被侵染细胞数目均显著优于地方品种和国外引进品种70%以上。固氮效应方面,国外引进品种固氮率(52.62%~63.49%)和我国育成品种的固氮率(53.30%~62.41%),均显著高于地方品种(43.05%~46.72%)。层次分割分析表明结瘤因子(根瘤组织被侵染细胞数目、单株有效根瘤数、单颗有效根瘤重和根瘤直径)和固氮因子(固氮酶活性、固氮率和固氮量)对地上干重具有63%的解释率,其中固氮因子的贡献率达89.56%,结瘤因子的贡献率仅占13.55%。相关性分析表明接种根瘤菌QL2后,不同类型品种固氮率均与地上干重显著正相关,即国外引进品种整体的地上干重增长率最大,最高达48.08%,其次为我国育成型和地方型品种。固氮率也与饲草营养品质的产量显著正相关,接种根瘤菌可普遍提高紫花苜蓿粗蛋白产量,最高增长率达51.08%(P<0.05),降低中性洗涤纤维和酸性洗涤纤维产量,最高分别降低40.55%和53.96%,可使饲草等级跃升1~2个等级。因此,固氮率对地上干重和饲草营养品质均会产生显著的积极影响,说明其在紫花苜蓿的产量提升和营养品质改善方面发挥着更为关键的作用,本研究结果为精准调控豆科植物-根瘤菌组合的固氮效应以及优化紫花苜蓿饲草品质提供了重要依据。
Inocculum of Sinorhizobium meliloti strain QL2 was applied to plants of eight alfalfa varieties (three imported varieties: WL168HQ, WL298HQ, and WL319HQ; three domestically bred varieties: Gannong No. 3, Gannong No. 5, and Gannong No. 9; and two local varieties: Qingshui and Longzhong) to clarify the differences in nitrogen fixation effects, with a view to improving the nodule formation and nitrogen fixation capacity of alfalfa and the efficiency of natural nitrogen utilization. Indicators such as nodule formation, nitrogen fixation, forage biomass, and nutritional quality were evaluated to study the differences in symbiosis, nitrogen fixation, and growth-promoting effects after inoculation with S. meliloti QL2. Results demonstrated that in domestically bred varieties, inoculating with S. meliloti QL2 significantly increased the weight of individual root nodules, as well as the root nodule diameter and the number of infected cells in the root nodules of by over 70% compared to both local and imported varieties. Regarding nitrogen fixation efficiency, the imported varieties (52.62% to 63.49%) and domestically bred varieties (53.30% to 62.41%) exhibited significantly higher fixation rates compared to local varieties (43.05% to 46.72%). Hierarchical segmentation analysis showed that nodulation factors (the number of infected cells in the root nodules, the number of effective root nodules per plant, the single effective root nodule weight and root nodule diameter) and nitrogen fixation factors (nitrogenase activity, nitrogen fixation percentage and nitrogen fixation amount) explained 63% of the variation in the above-ground dry weight. Of the explained variation, 89.56% was contributed by nitrogen fixation factors, and only 13.55% by nodulation factors. A correlation analysis revealed that after inoculation with S. meliloti QL2, the nitrogen fixation percentage of different categories of variety was significantly positively correlated with above-ground dry weight. That is, the growth rate (as reflected by above-ground dry weight) of imported varieties was the largest compared with CK, of which WL319HQ-QL2 had the highest growth rate of 48.08 %, followed by domestic bred varieties and local varieties. The nitrogen fixation percentage was also significantly positively correlated with the forage nutritional quality. Inoculation with rhizobia generally increased the crude protein yield of alfalfa with the highest increase being 51.08% (P<0.05), while reducing the yields of neutral detergent fiber and acid detergent fiber by 40.55% and 53.96%, respectively. These changes in nutritional composition resulted in an elevation of the forage quality score by 1 to 2 grades. In summary, a high nitrogen fixation rate has a significant positive impact on both above-ground dry weight and forage nutritional quality, meaning that it plays the critical role in improving the yield and nutritional quality of alfalfa. This study lays a foundation for development of materials to optimize nitrogen fixation efficiency in legume-rhizobia symbioses and improve alfalfa forage quality.
紫花苜蓿 / 根瘤菌 / 固氮率 / 苜蓿品种效应 / 饲草品质
alfalfa / rhizobia / nitrogen fixation percentage / alfalfa variety effect / forage quality
| [1] |
Liu W W. Evaluation of germplasm resources and identification of new germplasms in alfalfa. Hohhot: Inner Mongolia Agricultural University, 2013. |
| [2] |
刘伟伟. 紫花苜蓿种质资源评价及新种质的鉴定. 呼和浩特: 内蒙古农业大学, 2013. |
| [3] |
Jia X T. Study on genetic diversity and DUS test characteristics of alfalfa germplasms. Lanzhou: Lanzhou University, 2023. |
| [4] |
贾喜涛. 苜蓿种质资源遗传多样性及DUS测试性状研究. 兰州: 兰州大学, 2023. |
| [5] |
Sun W B. Comprehensive evaluation of 20 alfalfa varieties in different ecological environment and comparison of nutrition characteristics among different growth stages. Lanzhou: Gansu Agricultural University, 2016. |
| [6] |
孙万斌. 不同生境下20个紫花苜蓿品种的综合评价及不同生育期营养特性的比较. 兰州: 甘肃农业大学, 2016. |
| [7] |
Tormozin M A, Cherniavskih V I, Sajfutdinova L D, et al. Ecological study of alfalfa varieties of different geographical origin in the south of the central Russian upland. Russian Agricultural Sciences, 2023, 49(2): 140-145. |
| [8] |
Shi S L, Nan L L, Smith K F. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy, 2017, 7(1): 1. |
| [9] |
Ladha J K, Peoples M B, Reddy P M. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research, 2022, 283: 108541. |
| [10] |
Meng J. Effects of inoculating different rhizobia on growth and seed yield of alfalfa. Urumqi: Xinjiang Agricultural University, 2021. |
| [11] |
孟捷. 接种不同根瘤菌对苜蓿生长和种子产量的影响. 乌鲁木齐: 新疆农业大学, 2021. |
| [12] |
Gu C M, Huang W, Li Y, et al. Green manure amendment can reduce nitrogen fertilizer application rates for oilseed rape in maize-oilseed rape rotation. Plants, 2021, 10: 2640. |
| [13] |
Kassaw T K. Molecular genetics of nodule number regulation: Cloning, characterization and functional studies of the root determined nodulator1 (RDN1) gene in Medicago truncatula. Clemson: South Carolina Clemson University, 2012. |
| [14] |
Shi M L, Deng B, Liu Z K, et al. Inoculation effects of five rhizobial stains to alfalfa. Pratacultural Science, 2015, 32(1): 101-106. |
| [15] |
石茂玲, 邓波, 刘忠宽, 5株根瘤菌接种紫花苜蓿的效果.草业科学, 2015, 32(1): 101-106. |
| [16] |
Nutman P S. Varietal differences in the nodulation of subterranean clover. Australian Journal of Agricultural Research, 1967, 18(3): 381-425. |
| [17] |
Chen L Y, Zhang L J, Zhou Z Y. Research of salt tolerable rhizobia inoculation effects on Medicago sativa. Acta Prataculturae Sinica, 2008, 17(5): 43-47. |
| [18] |
陈利云, 张丽静, 周志宇. 耐盐根瘤菌对紫花苜蓿接种效果的研究. 草业学报, 2008, 17(5): 43-47. |
| [19] |
Pan J, Fan Y, Li R, et al. Screening of high efficient symbiotic rhizobium for Medicago sativa cv. Gannong No.3 and M. sativa cv. Longdong. Pratacultural Science, 2016, 33(8): 1536-1549. |
| [20] |
潘佳, 范燕, 李荣, 甘农3号和陇东苜蓿高效共生根瘤菌菌株的筛选. 草业科学, 2016, 33(8): 1536-1549. |
| [21] |
Kang W J. Biotype classification of Medicago sativa rhizobia and its transcriptome analysis. Lanzhou: Gansu Agricultural University, 2019. |
| [22] |
康文娟. 紫花苜蓿根瘤菌生物型划分及其转录组学分析. 兰州: 甘肃农业大学, 2019. |
| [23] |
Zhang S Q, Li J F, Shi S L. The relationship between developmental processes of reproductive organs and infection quantity of endogenous rhizobia. Jiangsu Journal of Agricultural Sciences, 2009, 25(5): 997-1001. |
| [24] |
张淑卿, 李剑峰, 师尚礼. 苜蓿繁殖器官发育过程与内生根瘤菌侵染数量的关系. 江苏农业学报, 2009, 25(5): 997-1001. |
| [25] |
Zeng Z H, Sui X H, Hu Y G, et al. Screening of highly-effective Sinorhizobium meliloti strains for Medicago sativa cultivars and their field inoculation. Acta Prataculturae Sinica, 2004, 13(5): 95-100. |
| [26] |
曾昭海, 隋新华, 胡跃高, 紫花苜蓿-根瘤菌高效共生体筛选及田间作用效果. 草业学报, 2004, 13(5): 95-100. |
| [27] |
Wang L L. Molecular mechanism of leghemoglobin in controlling efficient nodule symbiotic nitrogen fixation. Wuhan: Huazhong Agricultural University, 2019. |
| [28] |
王龙龙. 豆血红蛋白调控根瘤高效固氮的分子机制研究. 武汉: 华中农业大学, 2019. |
| [29] |
Zhou N, Li W, Wu Z, et al. Sequential extractions: A new way for protein quantification-data from peanut allergens. Analytical Biochemistry, 2015, 484: 31-36. |
| [30] |
Ma C, Liu C Y, Yu Y Y, et al. GmTNRP1, associated with rhizobial type-Ⅲ effector NoPT, regulates nitrogenase activity in the nodules of soybean (Glycine max). Food Energy Security, 2023, 12(4): e466. |
| [31] |
Shi S L. The analysis for factors that affect the ability of growth promotion of alfalfa rhizobia in cold and drought regions and screening of high efficient strains. Lanzhou: Gansu Agricultural University, 2005. |
| [32] |
师尚礼. 甘肃寒旱区苜蓿根瘤菌促生能力影响因子分析及高效促生菌株筛选研究. 兰州: 甘肃农业大学, 2005. |
| [33] |
Zhang L Y. Feed analyses and quality test (second edition). Beijing: China Agricultural University Press, 2006: 1615-1622. |
| [34] |
张丽英. 饲料分析及饲料质量检测技术(第2版). 北京: 中国农业大学出版社, 2006: 1615-1622. |
| [35] |
Zhang J K, Lu D X, Liu J X, et al. The present research situation and progress of crude fodder quality evaluation index. Pratacultural Science, 2004, 21(9): 55-61. |
| [36] |
张吉鹍, 卢德勋, 刘建新, 粗饲料品质评定指数的研究现状及其进展. 草业科学, 2004, 21(9): 55-61. |
| [37] |
Li J, Cui J J, Yu L L, et al. Research the quality on whole-plant corn silage in Jidong area. China Feed, 2021(7): 131-134. |
| [38] |
李娟, 崔婧婧, 于玲玲, 冀东地区全株玉米青贮饲料品质研究. 中国饲料, 2021(7): 131-134. |
| [39] |
Li Y G, Zhou J C. Root colonization and nodulation of Sinorhizobium fredii HN01DL in Glycine max rhizosphere. Chinese Journal of Applied Ecology, 2003, 14(8): 1283-1286. |
| [40] |
李友国, 周俊初. 费氏中华根瘤菌HN01DL在大豆根圈的定殖动态与结瘤研究. 应用生态学报, 2003, 14(8): 1283-1286. |
| [41] |
He L. The study of symbiotic nitrogen fixation effect of alfalfa varieties and rhizobium strains. Lanzhou: Gansu Agricultural University, 2023. |
| [42] |
何龙. 紫花苜蓿品种-根瘤菌株共生固氮效应研究. 兰州: 甘肃农业大学, 2023. |
| [43] |
Chen G. Study on lrp gene of Sinorhizobim fredii HNO1. Nanning: Guangxi University, 2007. |
| [44] |
陈钢.费氏中华根瘤菌HNO1 lrP基因的研究. 南宁: 广西大学, 2007. |
| [45] |
Kang J M, Zhang L J, Guo W S, et al. Screening of high efficient symbiotic rhizobium for Zhongmu No.1 alfalfa. Acta Agrestia Sinica, 2008, 16(5): 497-500. |
| [46] |
康俊梅, 张丽娟, 郭文山, 中苜1号紫花苜蓿高效共生根瘤菌的筛选. 草地学报, 2008, 16(5): 497-500. |
| [47] |
Gibson A H, Curnow B C, Bergersen F J, et al.Studies of field populations of rhizobium: Effectiveness of strains of rhizobium trifolii associated with Trifolium subterraneum L. pastures in South-Eastern Australia.Soil Biology and Biochemistry, 1975, 7: 95-102. |
| [48] |
Zhan J S, Liu M M, Zhao G Q. Effects of flavonoids and their application in ruminants. China Feed, 2014(23): 13-15. |
| [49] |
占今舜, 刘明美, 赵国琦. 黄酮的作用及其在反刍动物上的应用. 中国饲料, 2014(23): 13-15. |
| [50] |
Liu Y H, Chen Y, Li H G, et al. Regulation of nitrogen application rate on nodulation,nitrogen fixation, yield, and crude protein content of different alfalfa varieties. Soil and Fertilizer Sciences in China, 2024(6): 186-198. |
| [51] |
刘雨涵, 陈杨, 李海港, 施氮量对不同品种苜蓿结瘤固氮和产量及粗蛋白含量的调控. 中国土壤与肥料, 2024(6): 186-198. |
| [52] |
Ma X, Wang L L, Li W J, et al. Effects of different nitrogen levels on nitrogen fixation and seed production of alfalfa inoculated with rhizobia. Acta Prataculturae Sinica, 2013, 22(1): 95-102. |
| [53] |
马霞, 王丽丽, 李卫军, 不同施氮水平下接种根瘤菌对苜蓿固氮效能及种子生产的影响. 草业学报, 2013, 22(1): 95-102. |
| [54] |
Lamouche F, Bonadé-Bottino N, Mergaert P, et al. Symbiotic efficiency of spherical and elongated bacteroids in the Aeschynomene-Bradyrhizobium symbiosis. Frontiers in Plant Science, 2019, 10: 377. |
| [55] |
Guo P, Wang J Y, Shi X L, et al. Effects of nitrogen application rate on nodule characteristics and nitrogen utilization in different peanut genotypes. Journal of Shenyang Agricultural University, 2022, 53(4): 385-393. |
| [56] |
郭佩, 王佳艺, 史晓龙, 施氮量对不同基因型花生结瘤特性及氮素利用的影响. 沈阳农业大学学报, 2022, 53(4): 385-393. |
| [57] |
Awodele S O, Bennett J A. Soil biota legacies of alfalfa production vary with field conditions and among varieties and species. Agriculture, Ecosystems & Environment, 2022, 335: 107994. |
| [58] |
Zhang F, Li Y M, Dong S K, et al. Research progress on asymbiotic nitrogen-fixing microorganisms in grassland soil. (2024-07:24)[2025-02-01]. http://kns.cnki.net/kcms/detail/62.1069.S.20240723.1724.004.html. |
| [59] |
张凤, 李耀明, 董世魁, 草地土壤非共生固氮微生物研究进展. (2024-07:24)[2025-02-01]. http://kns.cnki.net/kcms/detail/62.1069.S.20240723.1724.004.html. |
| [60] |
Ma X F, Gao M, Cheng Z J. Molecular regulation for uptake and utilization of nitrogen in plant. The Crop Journal, 2013(4): 32-38. |
| [61] |
马雪峰, 高旻, 程治军. 植物氮素吸收与利用的分子机制研究进展. 作物杂志, 2013(4): 32-38. |
| [62] |
Kou J T, Shi S L, Cai Z S. Effects of ridge and furrow rainfall harvesting on growth characteristics and quality of Medicago sativa in dryland. Agricultural Sciences in China, 2010, 43(24): 5028-5036. |
| [63] |
寇江涛, 师尚礼, 蔡卓山. 垄沟集雨种植对旱作紫花苜蓿生长特性及品质的影响. 中国农业科学, 2010, 43(24): 5028-5036. |
| [64] |
Ma Y J, Quan J P, Gan H L, et al. Assessment of the impact of rhizobial inoculation on production performance and nutritional value of different varieties of purple alfalfa. Animal Husbandry & Veterinary Medicine, 2024, 43(1): 27-33. |
| [65] |
马垭杰, 权金鹏, 甘辉林, 接种根瘤菌对不同品种紫花苜蓿生产性能及营养价值的影响评价. 畜牧兽医杂志, 2024, 43(1): 27-33. |
| [66] |
Han H W, Sun L N, Yao T, et al. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013, 22(5): 104-112. |
| [67] |
韩华雯, 孙丽娜, 姚拓, 不同促生菌株组合对紫花苜蓿产量和品质的影响.草业学报, 2013, 22(5): 104-112. |
| [68] |
Luo J J, Xiao Y Z, Hou M L, et al. Effects of different additives on quality and vitamin content of mixed silage of alfalfa and Leymus chinensis. (2024-11-28) [2025-02-01]. http://kns.cnki.net/kcms/detail/11.3362.S.20241128.0906.002.html. |
| [69] |
罗俊杰, 肖燕子, 侯美玲, 不同添加剂对苜蓿与羊草混合青贮品质及维生素含量的影响. (2024-11-28) [2025-02-01]. http://kns.cnki.net/kcms/detail/11.3362.S.20241128.0906.002.html. |
| [70] |
Cao K F, Liu J W, Suo R Z, et al. Effect of rhizobia inoculation on nodule nitrogen fixation and growth of ‘Mengnong Clover No.1’. Acta Agrestia Sinica, 2023, 31(12): 3876-3886. |
| [71] |
曹克璠, 刘嘉伟, 索荣臻, 接种根瘤菌对‘蒙农三叶草1号’结瘤固氮及生长的影响. 草地学报, 2023, 31(12): 3876-3886. |
| [72] |
Wang L R, Wang W, Pu X J, et al. Comprehensive evaluation of production performance and feed quality of 19 alfalfa varieties in Qaidam Basin. Acta Agrestia Sinica, 2023, 31(10): 3136-3144. |
| [73] |
王龙然, 王伟, 蒲小剑, 柴达木盆地19个紫花苜蓿品种生产性能和饲用品质综合评价. 草地学报, 2023, 31(10): 3136-3144. |
| [74] |
Wang X L, Li H, Mi F G, et al. Comparison of production performance and winter survival rate of different fall dormancy alfalfa varieties. Acta Prataculturae Sinica, 2019, 28(6): 82-92. |
| [75] |
王晓龙, 李红, 米福贵, 不同秋眠级苜蓿生产性能及越冬率评价. 草业学报, 2019, 28(6): 82-92. |
| [76] |
Peng Y, Ma S J, De J, et al. Comparative analysis of identification and quality of 3 (Medicago Sativa) species in Nyingchi. Journal of Plateau Agriculture, 2019, 3(1): 76-83. |
| [77] |
彭艳, 马素洁, 德吉, 林芝不同紫花苜蓿(Medicago Sativa)栽培品种鉴定及品质研究. 高原农业, 2019, 3(1): 76-83. |
中国农业大学对口支援科研联合基金(GSAU-DKZY-2024-002)
/
| 〈 |
|
〉 |