十字型轻钢混凝土组合异形柱受压力学性能研究
Study on Mechanical Properties of Cross Shaped Light Steel Concrete Composite Column under Compression
为了研究新型十字型轻钢混凝土组合异形柱的受压力学性能,本文首先对其开展了轴心受压试验,试验发现十字型组合柱的破坏形式主要为弯曲破坏,轴压承载力高,变形能力良好。基于试验结果建立了精细化有限元模型,并进行了数值化模拟分析。然后,将有限元分析结果和试验测试结果进行对比,两者吻合较好,验证了所建立有限元模型的正确性。最后,采用经过验证的有限元计算模型,进行了混凝土强度、型钢厚度、偏心率以及长细比四个参数对组合柱受压性能的影响分析。结果表明:试件承载力和初始刚度随偏心率的增加而降低,随混凝土强度和型钢厚度的增加而增大,但对刚度的提升效果不显著且增幅不断缩小。十字型组合柱的变形能力主要受长细比的影响较大,试件延性和极限承载力随长细比的增加而降低。
In order to investigate the compressive performance of a new type of cross shaped light steel concrete composite irregular column, this paper first conducted an axial compression test on it. The test results showed that the failure mode of the cross shaped composite column was mainly bending failure, with high axial compression bearing capacity and good deformation ability. A refined finite element model was established based on experimental results, and numerical simulation analysis was conducted. Then, the finite element analysis results were compared with the experimental test results, and the two were in good agreement, which which verified the correctness of the established finite element model. Finally, the validated finite element calculation model was used to analyze the influences of four parameters, namely concrete strength, steel plate thickness, eccentricity, and aspect ratio, on the compressive performance of composite columns. The results indicate that the bearing capacity and initial stiffness of the specimen decrease with increasing eccentricity, while they increase with increment of concrete strength and steel plate thickness. However, the enhancement effect on stiffness is not significant and shows diminishing increments. The deformation capacity of cross shaped composite columns is mainly affected by the aspect ratio, and the ductility and ultimate bearing capacity of the specimens decrease with the increase of aspect ratio.
装配式建筑 / 轻钢混凝土组合结构 / 十字型异形柱 / 受压性能
prefabricated building / light steel concrete composite structure / cross shaped column / compression mechanical property
| [1] |
王晓平.基于绿色理念装配式建筑空间的思考[J].建筑结构,2023,53(3):154. |
| [2] |
WANG Xiaoping.Reflection on prefabricated building space based on green concept[J].Building Structure,2023,53(3):154.(in Chinese) |
| [3] |
程欣欣.装配式外围护技术在超低能耗建筑中的应用[J].建筑结构,2022,52(S1):1920-1925. |
| [4] |
CHENG Xinxin.Application of prefabricated exterior protection technology in ultra low energy buildings[J].Building Structure,2022,52(S1):1920-1925.(in Chinese) |
| [5] |
游又能,康一亭,马健,我国被动式超低能耗装配式建筑关键技术的研究与发展[J].建筑科学,2019,35(8):137-142. |
| [6] |
YOU Youneng,KANG Yiting,MA Jian,et al.Research and development of key technologies for passive ultra low energy consumption prefabricated buildings in China [J].Building Science,2019,35(8):137-142.(in Chinese) |
| [7] |
乔文涛,王玉环,尹晓祥,装配式冷弯薄壁型钢组合房屋结构体系及施工方法:CN109339242B[P].2020-08-04. |
| [8] |
QIAO Wentao,WANG Yuhuan,YIN Xiaoxiang,et al. Prefabricated cold-formed thin-walled steel composite building structural system and construction method:CN109339242B[P].2020-08-04.(in Chinese) |
| [9] |
乔文涛,尹晓祥,王泽雄,模块化装配式复合墙、装配式建筑结构体系及施工方法:CN110130527B[P].2020-06-30. |
| [10] |
QIAO Wentao,YIN Xiaoxiang,WANG Zexiong,et al. Modular prefabricated composite walls,prefabricated building structural systems,and construction methods:CN110130527B[P].2020-06-30.(in Chinese) |
| [11] |
苗远,段燕妮,张继承,内置T形钢骨-T形钢管混凝土短柱轴压性能试验研究[J].建筑钢结构进展,2023,25(12):1-10. |
| [12] |
MIAO Yuan,DUAN Yanni,ZHANG Jicheng,et al.Experimental study on axial compression performance of short columns with built-in T-shaped steel frame and T-shaped steel tube concrete[J].Advances in Building Steel Structures,2023,25(12):1-10.(in Chinese) |
| [13] |
XIONG Qingqing,CHEN Zhihua,ZHANG Wang,et al.Compressive behaviour and design of L-shaped columns fabricated using concrete-filled steel tubes[J].Engineering Structures,2017,152:758-770. |
| [14] |
周天华,余吉鹏,张钰,单轴对称十字型钢混凝土中长柱偏压性能试验研究[J].工程力学,2021,38(4):111-122. |
| [15] |
ZHOU Tianhua,YU Jipeng,ZHANG Yu,et al.Experimental study on eccentric compression performance of single axis symmetric cross shaped steel-concrete columns[J].Engineering Mechanics,2021,38(4):111-122.(in Chinese) |
| [16] |
姚行友,刘亚菲,郭彦利,轴心受压冷弯薄壁等肢卷边角钢屈曲性能试验与设计方法研究[J/OL].工业建筑:1-16[2024-05-15].https://kns.cnki.net/kcms2/article/abstract?v=a4fp6zKrpgaN6LreivRoh Ner P7KRgfowA9TvLHiyEzGJV9Auvbl6kbvIxJNBR3_ZvKXGrrFD5dsY9Q_BCvz35Q26qWdnhqAxHCLRXPpCD8jPKd83hZzTMu1i-qPZxGTjte7wd9y7y4gJz7xyg3AkjT1ZdKy8rbCNgGb0_JtrmBWT-LkaqqQe1w==&uniplat form=NZKPT&language=CHS |
| [17] |
YAO Xingyou,LIU Yafei,GUO Yanli,et al.Research on the buckling performance test and design method of axial compression cold bending thin-walled equal limb rolled edge angle steel[J/OL].Industrial Buildings:1-16[2400-05-15].https://kns.cnki.net/kcms2/article/abstract?v=a4fp6zKrpgaN6LreivRohNerP7KRgfowA9TvLHiyEzGJV9Auvbl6kbvIxJNBR3_ZvKXGrrFD5dsY9Q_BCvz35Q26qWdnhqAxHCLRXPpCD8jPKd83hZzTMu1i-qPZxGTjte7wd9y7y4gJz7xyg3AkjT1ZdKy8rbC NgGb0_JtrmBWT-LkaqqQe1w==&uniplatform=NZKP T&language=CHS(in Chinese) |
| [18] |
崔瑶,牛牧春,杨璐.冷弯薄壁型钢多肢拼合柱轴压试验研究[J].建筑钢结构进展,2017,19(6):35-42. |
| [19] |
CUI Yao,NIU Muchun,YANG Lu.Research on axial compression test of multi leg splicing columns of cold formed thin-walled steel[J].Progress in Building Steel Structures,2017,19(6):35-42.(in Chinese) |
| [20] |
王玉环.多肢冷弯薄壁型钢拼合截面立柱轴压性能研究[D].石家庄:石家庄铁道大学,2020. |
| [21] |
WANG Yuhuan.Research on the axial compression performance of multi limb cold formed thin-walled steel composite section columns[D].Shijiazhuang:Shijiazhuang TieDao University,2020.(in Chinese) |
| [22] |
郑再奇.冷弯薄壁型钢混凝土组合柱研究[J].建筑技术,2018,49(S1):213-217. |
| [23] |
ZHENG Zaiqi.Research on cold-formed thin-walled steel-concrete composite columns[J].Building Technology,2018,49(S1):213-217.(in Chinese) |
| [24] |
中华人民共和国住房和城乡建设部.普通混凝土力学性能试验方法标准:GB/T 50081—2019[S].北京:中国标准出版社,2019. |
| [25] |
The Ministry of Housing and Urban-Rural Development of the People's Republic of China.Standard test method for mechanical properties of ordinary concrete:GB/T 50081—2019[S].Beijing:Standards Press of China,2019.(in Chinese) |
| [26] |
中国钢铁工业协会.金属材料拉伸试验第一部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021. |
| [27] |
China Iron and Steel Industry Association.Tensile testing of metallic materials Part 1:Room temperature test method:GB/T 228.1—2021[S].Beijing:Standards Press of China,2021.(in Chinese) |
| [28] |
中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011. |
| [29] |
The Ministry of Housing and Urban Rural Development of the People's Republic of China.Code for Design of Concrete Structures:GB 50010—2010[S].Beijing:China Architecture & Building Press,2011.(in Chinese) |
| [30] |
ABDEL-RAHMAN N,SIVAKUMARAN K S.Material properties models for analysis of cold-formed steel members[J].Journal of Structural Engineering,1997,123(9):1135-1143. |
| [31] |
李爱群,王铁成,混凝土结构设计原理[M].北京:中国建筑工业出版社,2020. |
| [32] |
LI Aiqun,WANG Tiecheng,et al.Principles of concrete structure design[M].Beijing:China Architecture & Building Press,2020.(in Chinese) |
| [33] |
SIDOROFF F.Description of anisotropic damage application to elasticity[M].Berlin:Springer Berlin Heidelberg,1981. |
河北省杰出青年科学基金项目(E2022210084)
/
| 〈 |
|
〉 |