我国是全球花岗岩分布最为广泛的国家之一,花岗岩分布面积达到约9.1×105 km2,占全国面积的10%左右[22]。其中,华南地区花岗岩出露面积约占总面积的20%,达到1.7×105 km2 [9]。华南地区由于气候以亚热带为主,温暖湿润,促进大量花岗岩风化壳形成。迄今为止,对该地区花岗岩风化壳已经开展了广泛的研究[21,23⇓⇓-26],但关于风化壳生成速率的研究还非常匮乏,极大限制了对花岗岩风化壳形成和演化的研究。因此,本研究选取位于华南地区的江西龙南为研究区,以前人在区内开展过相关研究的花岗岩风化壳剖面为研究对象开展铀系不平衡研究,确定其生成速率和控制因素。同时,结合前人在该风化壳中开展的宇宙成因核素法得到的剥蚀速率[23],分析风化壳的演化状态及其演化过程。本研究的开展将为深入理解花岗岩风化壳的生成和演化提供数据支撑和理论依据。
MONTGOMERYD R. Soil erosion and agricultural sustainability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(33): 13268-13272.
[2]
ARKLEYR J. Soil moisture use by mixed conifer forest in a summer-dry climate[J]. Soil Science Society of America Journal, 1981, 45(2): 423-427.
[3]
GRAHAMR C, TICEK R, GUERTALW R. The pedologic nature of weathered rock[M]// SSSA Special Publications. Madison: Soil Science Society of America, 2015: 21-40.
[4]
DREVERJ I, STILLINGSL L. The role of organic acids in mineral weathering[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 120(1/2/3): 167-181.
[5]
KUMPL R, BRANTLEYS L, ARTHURM A. Chemical weathering, atmospheric CO2, and climate[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 611-667.
[6]
BARRIOSE. Soil biota, ecosystem services and land productivity[J]. Ecological Economics, 2007, 64(2): 269-285.
[7]
BORSTA M, SMITHM P, FINCHA A, et al. Adsorption of rare earth elements in regolith-hosted clay deposits[J]. Nature Communications, 2020, 11(1): 4386.
BEAULIEUE, GODDÉRISY, LABATD, et al. Impact of atmospheric CO2 levels on continental silicate weathering[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(7): G3.
[11]
DONNADIEUY, GODDÉRISY, RAMSTEING, et al. A ‘Snowball Earth’ climate triggered by continental break-up through changes in runoff[J]. Nature, 2004, 428(6980): 303-306.
[12]
DONNINIM, FRONDINIF, PROBSTJ L, et al. Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine Region[J]. Global and Planetary Change, 2016, 136: 65-81.
[13]
ROYERD L, BERNERR A, MONTAÑEZI P, et al. CO2 as a primary driver of Phanerozoic climate[J]. GSA Today, 2004, 14(3): 4-10.
CHABAUXF, BLAESE, STILLEP, et al. Regolith formation rate from U-series nuclides: implications from the study of a spheroidal weathering profile in the Rio Icacos watershed (Puerto Rico)[J]. Geochimica et Cosmochimica Acta, 2013, 100: 73-95.
[18]
CHABAUXF, RIOTTEJ, DEQUINCEYO. U-Th-Ra fractionation during weathering and river transport[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 533-576.
[19]
ACKERERJ, CHABAUXF, VANDER WOERD J, et al. Regolith evolution on the millennial timescale from combined U-Th-Ra isotopes and in situ cosmogenic 10Be analysis in a weathering profile (Strengbach catchment, France)[J]. Earth and Planetary Science Letters, 2016, 453: 33-43.
[20]
DOSSETOA, HANNAN-JOYNERA, RAINESE, et al. Geochemical evolution of soils on Reunion Island[J]. Geochimica et Cosmochimica Acta, 2022, 318: 263-278.
[21]
JIAG D, CHABAUXF, VANDER WOERD J, et al. Determination of regolith production rates from 238U-234U-230Th disequilibrium in deep weathering profiles (Longnan, SE China)[J]. Chemical Geology, 2021, 574: 120241.
[22]
TAYLORS R, MCLENNANS M. The continental crust: its composition and evolution[M]. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific, 1985.
[23]
CUIL F, LIUC Q, XUS, et al. Subtropical denudation rates of granitic regolith along a hill ridge in Longnan, SE China derived from cosmogenic nuclide depth-profiles[J]. Journal of Asian Earth Sciences, 2016, 117: 146-152.
[24]
LIUW J, LIUC Q, BRANTLEYS L, et al. Deep weathering along a granite ridgeline in a subtropical climate[J]. Chemical Geology, 2016, 427: 17-34.
[25]
ZHANGZ J, MAOH R, ZHAOZ Q, et al. Sulfur dynamics in forest soil profiles developed on granite under contrasting climate conditions[J]. Science of the Total Environment, 2021, 797: 149025.
[26]
ZHANGZ J, LIUC Q, ZHAOZ Q, et al. Behavior of redox-sensitive elements during weathering of granite in subtropical area using X-ray absorption fine structure spectroscopy[J]. Journal of Asian Earth Sciences, 2015, 105: 418-429.
RIHSS, GONTIERA, LASCARE, et al. Effect of organic matter removal on U-series signal in clay minerals[J]. Applied Clay Science, 2017, 147: 128-136.
[29]
BOSIAC, CHABAUXF, PELTE, et al. U-series disequilibria in minerals from Gandak River sediments (Himalaya)[J]. Chemical Geology, 2018, 477: 22-34.
[30]
WILLIAMSR W, COLLERSONK D, GILLJ B, et al. High Th/U ratios in subcontinental lithospheric mantle: mass spectrometric measurement of Th isotopes in Gaussberg lamproites[J]. Earth and Planetary Science Letters, 1992, 111(2/3/4): 257-268.
[31]
WEYERS, ANBARA D, GERDESA, et al. Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 345-359.
[32]
CHENGH, EDWARDSR L, HOFFJ, et al. The half-lives of uranium-234 and thorium-230[J]. Chemical Geology, 2000, 169(1/2): 17-33.
[33]
JAFFEYA H, FLYNNK F, GLENDENINL E, et al. Precision measurement of half-lives and specific activities of U235 and U238[J]. Physical Review C, 1971, 4(5): 1889.
[34]
RICHTERS, ALONSOA, DEBOLLE W, et al. Re-certification of a series of uranium isotope reference materials: IRMM-183, IRMM-184, IRMM-185, IRMM-186 and IRMM-187[J]. International Journal of Mass Spectrometry, 2005, 247(1/2/3): 37-39.
[35]
CARPENTIERM, GANNOUNA, PINC, et al. New thorium isotope ratio measurements in silicate reference materials: A-THO, AGV-2, BCR-2, BE-N, BHVO-2 and BIR-1[J]. Geostandards and Geoanalytical Research, 2016, 40(2): 239-256.
[36]
SIMSK W W, GILLJ B, DOSSETOA, et al. An inter-laboratory assessment of the thorium isotopic composition of synthetic and rock reference materials[J]. Geostandards and Geoanalytical Research, 2008, 32(1): 65-91.
[37]
MATTHEWSK A, MURRELLM T, GOLDSTEINS J, et al. Uranium and thorium concentration and isotopic composition in five glass (BHVO-2G, BCR-2G, NKT-1G, T1-G, ATHO-G) and two powder (BHVO-2, BCR-2) reference materials[J]. Geostandards and Geoanalytical Research, 2011, 35(2): 227-234.
[38]
RIHSS, GONTIERA, VOINOTA, et al. Field biotite weathering rate determination using U-series disequilibria[J]. Geochimica et Cosmochimica Acta, 2020, 276: 404-420.
[39]
NESBITTH W, YOUNGG M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717.
[40]
TIEHT T, LEDGERE B, ROWEM W. Release of uranium from granitic rocks during in situ weathering and initial erosion (central Texas)[J]. Chemical Geology, 1980, 29(1/2/3/4): 227-248.
[41]
DEPAOLOD J, MAHERK, CHRISTENSENJ N, et al. Sediment transport time measured with U-series isotopes: results from ODP North Atlantic drift site 984[J]. Earth and Planetary Science Letters, 2006, 248(1/2): 394-410.
[42]
KIGOSHIK. Alpha-recoil thorium-234: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature[J]. Science, 1971, 173(3991): 47-48.
[43]
FLEISCHERR L. Isotopic disequilibrium of uranium: alpha-recoil damage and preferential solution effects[J]. Science, 1980, 207(4434): 979-981.
[44]
FLEISCHERR L. Alpha-recoil damage and solution effects in minerals: uranium isotopic disequilibrium and radon release[J]. Geochimica et Cosmochimica Acta, 1982, 46(11): 2191-2201.
[45]
VIGIERN, BURTONK W, GISLASONS R, et al. The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain[J]. Earth and Planetary Science Letters, 2006, 249(3/4): 258-273.
[46]
SCHOONEJANSJ, VANACKERV, OPFERGELTS, et al. Coupling uranium series and 10Be cosmogenic radionuclides to evaluate steady-state soil thickness in the Betic Cordillera[J]. Chemical Geology, 2016, 446: 99-109.
[47]
DOSSETOA, MENOZZID, KINSLEYL P J. Age and rate of weathering determined using uranium-series isotopes: testing various approaches[J]. Geochimica et Cosmochimica Acta, 2019, 246: 213-233.
[48]
MAL, CHABAUXF, PELTE, et al. Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory[J]. Earth and Planetary Science Letters, 2010, 297(1/2): 211-225.
[49]
SUNJ, XUW B, FENGB. A global search strategy of quantum-behaved particle swarm optimization[C]// Proceedings of IEEE conference on cybernetics and intelligent systems, Singapore. New York: IEEE, 2004: 111-116.
[50]
ŠAMONILP, PHILLIPSJ, DANĚKP, et al. Soil, regolith, and weathered rock: theoretical concepts and evolution in old-growth temperate forests, Central Europe[J]. Geoderma, 2020, 368: 114261.
[51]
HEIMSATHA M, DIBIASER A, WHIPPLEK X. Soil production limits and the transition to bedrock-dominated landscapes[J]. Nature Geoscience, 2012, 5: 210-214.
[52]
HEIMSATHA M, DIETRICHW E, NISHIIZUMIK, et al. The soil production function and landscape equilibrium[J]. Nature, 1997, 388: 358-361.
[53]
MAL, CHABAUXF, WESTN, et al. Regolith production and transport in the Susquehanna Shale Hills Critical Zone Observatory, Part 1: insights from U-series isotopes[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 722-740.
[54]
MATHIEUD, BERNATM, NAHOND. Short-lived U and Th isotope distribution in a tropical laterite derived from granite (Pitinga River Basin, Amazonia, Brazil): application to assessment of weathering rate[J]. Earth and Planetary Science Letters, 1995, 136(3/4): 703-714.
[55]
DEQUINCEYO, CHABAUXF, CLAUERN, et al. Dating of weathering profiles by radioactive disequilibria: contribution of the study of authigenic mineral fractions[J]. Comptes Rendus De L’Académie Des Sciences - Series IIA: Earth and Planetary Science, 1999, 328(10): 679-685.
[56]
DOSSETOA, TURNERS P, CHAPPELLJ. The evolution of weathering profiles through time: new insights from uranium-series isotopes[J]. Earth and Planetary Science Letters, 2008, 274(3/4): 359-371.
[57]
DOSSETOA, BUSSH L, SURESHP. Rapid regolith formation over volcanic bedrock and implications for landscape evolution[J]. Earth and Planetary Science Letters, 2012, 337/338: 47-55.
[58]
DOSSETOA, BUSSH L, SURESHP O. Rapid regolith formation over volcanic bedrock and implications for landscape evolution[J]. Earth and Planetary Science Letters, 2012, 337: 47-55.
[59]
GONTIERA, RIHSS, CHABAUXF, et al. Lack of bedrock grain size influence on the soil production rate[J]. Geochimica et Cosmochimica Acta, 2015, 166: 146-164.
[60]
DIXONJ L, VON BLANCKENBURGF. Soils as pacemakers and limiters of global silicate weathering[J]. Comptes Rendus Geoscience, 2012, 344(11/12): 597-609.
[61]
FERRIERK L, KIRCHNERJ W. Effects of physical erosion on chemical denudation rates: a numerical modeling study of soil-mantled hillslopes[J]. Earth and Planetary Science Letters, 2008, 272(3/4): 591-599.
[62]
GABETE J, MUDDS M. A theoretical model coupling chemical weathering rates with denudation rates[J]. Geology, 2009, 37(2): 151-154.
[63]
RIEBEC S, HAHMW J, BRANTLEYS L. Controls on deep critical zone architecture: a historical review and four testable hypotheses[J]. Earth Surface Processes and Landforms, 2017, 42(1): 128-156.
[64]
NORTONK P, MOLNARP, SCHLUNEGGERF. The role of climate-driven chemical weathering on soil production[J]. Geomorphology, 2014, 204: 510-517.
[65]
GILBERTG K. Report on the geology of the Henry Mountains[M]. Washington: US Government Printing Office, 1877.
[66]
CARSONM A, KIRKBYM. Hillslope form and process[M]. Cambridge: Cambridge University Press, 1972.
[67]
AHNERTF. Some comments on the quantitative formulation of geomorphological processes in a theoretical model[J]. Earth Surface Processes, 1977, 2(2/3): 191-201.