State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
将每5.0 g土壤样品在70%田间最大持水量(MWHC)条件下预培养14 d,置于20 mL离心管中,加入0.125 mL 14C标记葡萄糖溶液。将离心管置于装有5 mL NaOH溶液的蓝盖瓶中,拧紧瓶盖。在黑暗条件下培育24 h后,将捕集器中的NaOH溶液转移到液体闪烁计数器(LSBC)中进行测量[9]。每个处理重复3次。对照组土壤SIR设定为100%,各处理SIR相对量(%)为对照的比值,用Log-logistic函数拟合对土壤Cr微生物毒性(ECx)进行测定。
SINGHD, SHARMAN, SINGHC K, et al. Chromium (VI)-induced alterations in physio-chemical parameters, yield, and yield characteristics in two cultivars of mungbean (Vigna radiata L.)[J]. Frontiers in plant science, 2021, 12: 735129.
[2]
LARSENK K, WIELANDTD, SCHILLERM, et al. Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J]. Journal of Chromatography A, 2016, 1443: 162-174.
[3]
DEFLORA S, BAGNASCOM, SERRAD, et al. Genotoxicity of chromium compounds. A review[J]. Mutation Research/Reviews in Genetic Toxicology, 1990, 238(2): 99-172.
[4]
ASHRAFA, BIBII, NIAZIN K, et al. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions[J]. International Journal of Phytoremediation, 2017, 19(7): 605-613.
[5]
SAHAR, NANDIR, SAHAB. Sources and toxicity of hexavalent chromium[J]. Journal of Coordination Chemistry, 2011, 64(10): 1782-1806.
[6]
SPEIRT W, KETTLESH A, PARSHOTAMA, et al. A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to soil biological properties[J]. Soil Biology and Biochemistry, 1995, 27(6): 801-810.
[7]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
[8]
ZHANGX, ZHANGX, LIL, et al. The toxicity of hexavalent chromium to soil microbial processes concerning soil properties and aging time[J]. Environmental Research, 2022, 204: 111941.
[9]
HAANSTRAL, DOELMANP, VOSHAARJ H O. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2): 293-297.
EZEM O, GEORGES C, HOSEG C. Dose-response analysis of diesel fuel phytotoxicity on selected plant species[J]. Chemosphere, 2021, 263: 128382.
[13]
GILLERK E, WITTERE, MCGRATHS P. Heavy metals and soil microbes[J]. Soil Biology and Biochemistry, 2009, 41(10): 2031-2037.
[14]
OORTSK, BRONCKAERSH, SMOLDERSE. Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 845-853.
[15]
CHENS, MENGW, LIS, et al. Overview on current criteria for heavy metals and its hint for the revision of soil environmental quality standards in China[J]. Journal of Integrative Agriculture, 2018, 17(4): 765-774.
[16]
AMINH, ARAINB A, AMINF, et al. Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L[J]. American Journal of Plant Sciences, 2013, 4(12): 2431-2439.
KUPERMANR G, SICILIANOS D, RÖMBKEJ, et al. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes[J]. Integrated environmental assessment and management, 2014, 10(3): 388-400.
[19]
BERRYR III, LÓPEZ-MARTÍNEZG. A dose of experimental hormesis: when mild stress protects and improves animal performance[J]. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2020, 242: 110658.
[20]
BELZR G, DUKES O. Modelling biphasic hormetic dose responses to predict sub-NOAEL effects using plant biology as an example[J]. Current Opinion in Toxicology, 2022, 29: 36-42.
[21]
PATNAIKA R, ACHARYV M M, PANDAB B. Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L[J]. Plant Growth Regulation, 2013, 71: 157-170.
[22]
MORKUNASI, WOŹNIAKA, MAIV C, et al. The role of heavy metals in plant response to biotic stress[J]. Molecules, 2018, 23(9): 2320.
[23]
UDDINI, BANOA, MASOODS. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation[J]. Ecotoxicology and Environmental Safety, 2015, 113: 271-278.
[24]
TALEBIM, TABATABAEIB E S, AKBARZADEHH. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes[J]. Chemosphere, 2019, 230: 488-497.
[25]
CALABRESEE J, AGATHOKLEOUSE, KOZUMBOW J, et al. Estimating the range of the maximum hormetic stimulatory response[J]. Environmental Research, 2019, 170: 337-343.
[26]
ZHANGX X, LINZ F. Hormesis-induced gap between the guidelines and reality in ecological risk assessment[J]. Chemosphere, 2020, 243: 125348.
[27]
JARDINEP M, STEWARTM A, BARNETTM O, et al. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility[J]. Environmental Science and Technology, 2013, 47(19): 11241-11248.
[28]
LINX L, SUNZ J, ZHAOL, et al. Toxicity of exogenous hexavalent chromium to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time[J]. Chemosphere, 2019, 224: 734-742.
[29]
LIB R, LIAOP, XIEL, et al. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments[J]. Water Research, 2020, 181: 115923.
ALYAZOURIA, JEWSBURYR, TAYIMH, et al. Uptake of chromium by Portulaca oleracea from soil: effects of organic content, pH, and sulphate concentration[J]. Applied and Environmental Soil Science, 2020, 2020: 1-10.
[32]
LOYAUX-LAWNICZAKS, LECOMTEP, EHRHARDTJ J. Behavior of hexavalent chromium in a polluted groundwater: redox processes and immobilization in soils[J]. Environmental Science and Technology, 2001, 35(7): 1350-1357.