我国幅员辽阔,新生代火山区分布广泛,总面积约1.4×105 km2 [2],相当于欧洲火山地热区总面积的3倍之多[24]。我国新生代火山区主要分布于东部地区(特别是东北地区)和青藏高原及其周边地区[2,35],在构造背景上分别受太平洋构造域和特提斯构造域影响[36-37]。我国大陆活火山全部处于间歇期[2],部分火山区地下仍存有高温岩浆房[9,38-39],区内水热活动明显[36-37],向大气圈源源不断地释放温室气体。目前,国际火山学术界一致认为,具有巨量温室气体释放规模的火山区通常具有以下特征[40⇓-42]:(1)人类历史时期有过大规模火山喷发;(2)火山区地下深部存在活动岩浆房;(3)区内水热活动明显。我国长白山火山区、五大连池和腾冲火山区等,由于存在明确喷发时间的史料记载[2]而备受国内外火山学界关注。
GRIGGSD J, NOGUERM. Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change[J]. Weather, 2002, 57(8): 267-269.
HALMERM M, SCHMINCKEH U, GRAFH F. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years[J]. Journal of Volcanology and Geothermal Research, 2002, 115(3/4): 511-528.
[11]
GERLACHT M. Present-day CO2 emissions from volcanos[J]. Eos, Transactions American Geophysical Union, 1991, 72(23): 249-255.
[12]
WILLIAMSS N, SCHAEFERS J, MARTALUCIA CALVACHE V, et al. Global carbon dioxide emission to the atmosphere by volcanoes[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1765-1770.
[13]
ALLARDP. Global emissions of helium-3 by subaerial volcanism[J]. Geophysical Research Letters, 1992, 19(14): 1479-1481.
[14]
MARTYB, LE CLOARECM F. Helium-3 and CO2 fluxes from subaerial volcanoes estimated from polonium-210 emissions[J]. Journal of Volcanology and Geothermal Research, 1992, 53(1/2/3/4): 67-72.
[15]
VAREKAMPJ C, KREULENR, POORTERR P E, et al. Carbon sources in arc volcanism, with implications for the carbon cycle[J]. Terra Nova, 1992, 4(3): 363-373.
[16]
SANOY, WILLIAMSS N. Fluxes of mantle and subducted carbon along convergent plate boundaries[J]. Geophysical Research Letters, 1996, 23(20): 2749-2752.
[17]
MARTYB, TOLSTIKHINI N. CO2 fluxes from mid-ocean ridges, arcs and plumes[J]. Chemical Geology, 1998, 145(3/4): 233-248.
[18]
MÖRNERN A, ETIOPEG. Carbon degassing from the lithosphere[J]. Global and Planetary Change, 2002, 33(1/2): 185-203.
[19]
WERNERC, BRANTLEYS. CO2 emissions from the Yellowstone volcanic system[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(7): 1061.
[20]
BURTONM R, SAWYERG M, GRANIERID. Deep carbon emissions from volcanoes[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 323-354.
BERGFELDD, EVANSW C, LOWENSTERNJ B, et al. Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming[J]. Chemical Geology, 2012, 330: 233-243.
[26]
ALLARDP, CARBONNELLEJ, DAJLEVICD, et al. Eruptive and diffuse emissions of CO2 from Mount Etna[J]. Nature, 1991, 351: 387-391.
[27]
GERLACHT M, DELGADOH, MCGEEK A, et al. Application of the LI-COR CO2 analyzer to volcanic plumes: a case study, volcán Popocatépetl, Mexico, June 7 and 10, 1995[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 8005-8019.
[28]
CHIODINIG, FRONDINIF, CARDELLINIC, et al. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B8): 16213-16221.
GIGGENBACHW F, SANOY, WAKITAH. Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary[J]. Geochimica et Cosmochimica Acta, 1993, 57(14): 3427-3455.
[33]
SANOY, MARTYB. Origin of carbon in fumarolic gas from island arcs[J]. Chemical Geology, 1995, 119(1/2/3/4): 265-274.
[34]
ZHANGM L, GUOZ F, SANOY, et al. Stagnant subducted pacific slab-derived CO2 emissions: insights into magma degassing at Changbaishan volcano, NE China[J]. Journal of Asian Earth Sciences, 2015, 106: 49-63.
ROWEG L. Encyclopedia of volcanoes[J]. Eos, Transactions American Geophysical Union, 2000, 81(21): 241.
[41]
HILTOND R, FISCHERT P, MARTYB. Noble gases and volatile recycling at subduction zones[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 319-370.
[42]
LEEC T A, SHENB, SLOTNICKB S, et al. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change[J]. Geosphere, 2013, 9(1): 21-36.
LECLOAREC M F, MARTYB. Volatile fluxes from volcanoes[J]. Terra Nova, 1991, 3(1): 17-27.
[46]
GIAMMANCOS, MELIÁNG, NERIM, et al. Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying[J]. Journal of Volcanology and Geothermal Research, 2016, 311: 79-98.