JAMESH L. Sedimentary facies of iron-formation[J]. Economic Geology, 1954, 49(3): 235-293.
[2]
KLEINC. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10): 1473-1499.
[3]
BEKKERA, PLANAVSKYN J, KRAPEŽB, et al. Iron Formations: their origins and implications for ancient seawater chemistry[J]. Treatise on Geochemistry, 2014, 9: 561-628.
[4]
WANGC, ROBBINSL J, PLANAVSKYN J, et al. Archean to early Paleoproterozoic iron formations document a transition in iron oxidation mechanisms[J]. Geochimica et Cosmochimica Acta, 2023, 343: 286-303.
[5]
GROSSG A. A classification of iron formations based on depositional environments[J]. The Canadian Mineralogist, 1980, 18(2): 215-222.
[6]
BEUKESN, GUTZMERJ. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic Boundary[J]. Reviews in Economic Geology, 2008, 15: 5-47.
[7]
LYONST W, DIAMONDC W, PLANAVSKYN J, et al. Oxygenation, life, and the planetary system during Earth's middle history: an overview[J]. Astrobiology, 2021, 21(8): 906-923.
[8]
JICKELLST D, ANZ S, ANDERSENK K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5718): 67-71.
[9]
TRéGUERP J, ROCHAC L D L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5(1): 477-501.
[10]
LYONST W, REINHARDC T, PLANAVSKYN J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
[11]
ISLEYA E, ABBOTTD H. Plume-related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research: Solid Earth, 1999, 104: 15461.
[12]
BARLEYM E, PICKARDA L, SYLVESTERP J. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago[J]. Nature, 1997, 385(6611): 55-58.
[13]
RASMUSSENB, FLETCHERI R, BEKKERA, et al. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth[J]. Nature, 2012, 484(7395): 498-501.
[14]
HOLLANDH D. The Chemical Evolution of the Atmosphere and Oceans[M]. Princeton: Princeton University Press, 1984.
[15]
CLOUDP E. A working model of the primitive Earth[J]. American Journal of Science, 1972, 272: 537-548.
[16]
CANFIELDD E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396: 450-453.
[17]
POULTONS W, FRALICKP W, CANFIELDD E. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3(7): 486-490.
[18]
WANGC, LECHTEM A, REINHARDC T, et al. Strong evidence for a weakly oxygenated ocean-atmosphere system during the Proterozoic[J]. Proceedings of the National Academy of Sciences, 2022, 119(6): e2116101119.
[19]
SHANGM, TANGD, SHIX, et al. A pulse of oxygen increases in the early Mesoproterozoic ocean at ca. 1.57-1.56 Ga[J]. Earth and Planetary Science Letters, 2019, 527: 115797.
PLANAVSKYN J, MCGOLDRICKP, SCOTTC T, et al. Widespread iron-rich conditions in the mid-Proterozoic ocean[J]. Nature, 2011, 477(7365): 448-451.
[22]
PLANAVSKYN J, REINHARDC T, WANGX, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635-638.
[23]
GUILBAUDR, POULTONS W, BUTTERFIELDN J, et al. A global transition to ferruginous conditions in the early Neoproterozoic oceans[J]. Nature Geoscience, 2015, 8(6): 466-470.
CANFIELDD E, ZHANGS, WANGH, et al. A Mesoproterozoic iron formation[J]. Proceedings of the National Academy of Sciences, 2018, 115(17): E3895-E904.
[26]
TANGD, SHIX, JIANGG, et al. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications[J]. Gondwana Research, 2018, 58: 1-15.
[27]
SUW, ZHANGS, HUFFW D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(3): 543-53.
YANGX, ZHANGZ, GUOS, et al. Geochronological and geochemical studies of the metasedimentary rocks and diabase from the Jingtieshan deposit, North Qilian, NW China: constraints on the associated banded iron formations[J]. Ore Geology Reviews, 2016, 73: 42-58.
[32]
QIUY, ZHAOT, LIY. The Yunmengshan iron formation at the end of the Paleoproterozoic era[J]. Applied Clay Science, 2020, 199: 105888.
[33]
QIUY, QINL, HUANGF, et al. Early prosperity of iron bacteria at the end of the Paleoproterozoic Era[J]. Geophysical Research Letters, 2022, 49(9): e2022GL097877.
[34]
KENDALLB, CREASERR A, GORDONG W, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2534-2558.
[35]
LID, LUOG, YANGH, et al. Characteristics of the carbon cycle in late Mesoproterozoic: evidence from carbon isotope composition of paired carbonate and organic matter of the Shennongjia Group in South China[J]. Precambrian Research, 2022, 377: 106726.
[36]
MCDOUGALLI, DUNNP R, COMPSTONW, et al. Isotopic age determinations on precambrian rocks of the carpentaria region, northern territory, Australia[J]. Journal of the Geological Society of Australia, 1965, 12(1): 67-90.
[37]
TRENDALLA F. Precambrian Iron-Formations of Australia[J]. Economic Geology, 1973, 68(7): 1023-1034.
[38]
FROESEE, GOETZP A. Geology of the Sherridon Group in the vicinity of Sherridon, Manitoba[M]. Ottawa: Geological Survey of Canada, 1981.
[39]
JARRETTA, HALLL, CARRL, et al. Source rock geochemistry of the Isa Superbasin and South Nicholson Basin, Northern Australia: baseline regional hydrocarbon prospectivity[M]. Canberra: Geoscience Australia, 2019.
[40]
CARSONC J, KOSITCINN, ANDERSONJ R, et al. A revised Proterozoic tectono-stratigraphy of the South Nicholson region, Northern Territory, Australia: insights from SHRIMP U-Pb detrital zircon geochronology[J/OL]. Australian Journal of Earth Sciences, 2023: 1-25 [2023-10-21]. DOI: 10.1080/08120099.2023.2264355.
[41]
ERMANOVICSM T, JONESR M. The Palapye Group, central-eastern Botswana[J]. South African Journal of Geology, 1978, 81: 61-73.
[42]
KENDALLB, ANBARA D, KAPPLERA, et al. The global iron cycle. Fundamentals of geobiology[M]. Hoboken: Wiley Online Library, 2012: 65-92.
[43]
KONHAUSERK O, PLANAVSKYN J, HARDISTYD S, et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172: 140-177.
[44]
CONDIEK C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104(1/2/3/4): 1-37.
[45]
HOLLANDH D. The oceans: a possible source of iron in iron-formations[J]. Economic Geology, 1973, 68(7): 1169-1172.
[46]
CHUN C, JOHNSONC M, BEARDB L, et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 202-217.
[47]
SEVERMANNS, JOHNSONC M, BEARDB L, et al. The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 degrees 14' N[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 63-76.
[48]
FITZSIMMONSJ N, JOHNS G, MARSAYC M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange[J]. Nature Geoscience, 2017, 10(3): 195-201.
KUMPL R, SEYFRIEDW E. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J]. Earth and Planetary Science Letters, 2005, 235(3): 654-662.
[51]
LIW, BEARDB L, JOHNSONC M. Biologically recycled continental iron is a major component in banded iron formations[J]. Proceedings of the National Academy of Sciences, 2015, 112(27): 8193-8198.
[52]
BEKKERA, SLACKJ F, PLANAVSKYN, et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508.
[53]
KAPPLERA, PASQUEROC, KONHAUSERK, et al. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33: 865-868.
[54]
KONHAUSERK O, HAMADET, RAISWELLR, et al. Could bacteria have formed the Precambrian banded iron formations?[J]. Geology, 2002, 30(12): 1079-1082.
POSTHN R, KONHAUSERK O, KAPPLERA. Microbiological processes in banded iron formation deposition[J]. Sedimentology, 2013, 60(7): 1733-1754.
[57]
CAIRNS-SMITHA G. Precambrian solution photochemistry, inverse segregation, and banded iron formations[J]. Nature, 1978, 276(5690): 807-808.
[58]
KONHAUSERK O, AMSKOLDL, LALONDES V, et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 87-100.
[59]
RASMUSSENB, MUHLINGJ R, SUVOROVAA, et al. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform[J]. Precambrian Research, 2017, 290: 49-62.
[60]
TOSCAN J, GUGGENHEIMS, PUFAHLP K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater[J]. GSA Bulletin, 2016, 128(3/4): 511-530.
[61]
ROBBINSL J, FUNKS P, FLYNNS L, et al. Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations[J]. Nature Geoscience, 2019, 12(7): 558-563.
[62]
PLANAVSKYN J, ASAELD, HOFMANNA, et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event[J]. Nature Geoscience, 2014, 7(4): 283-286.
[63]
LALONDES V, KONHAUSERK O. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis[J]. Proceedings of the National Academy of Sciences, 2015, 112(4): 995-1000.
[64]
DUANY, ANBARA D, ARNOLDG L, et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6655-6668.
[65]
SIEVERR. The silica cycle in the Precambrian[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3265-3272.
[66]
TRéGUERP, NELSOND M, VANBENNEKOM A J, et al. The silica balance in the world ocean: a reestimate[J]. Science, 1995, 268(5209): 375-379.
[67]
PERRYE C, LEFTICARIUL. Formation and geochemistry of Precambrian Cherts[M]//Treatise on geochemistry. Amsterdam: Elsevier, 2014: 113-139.
[68]
PERCAK-DENNETTE M, BEARDB L, XUH, et al. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater[J]. Geobiology, 2011, 9(3): 205-220.
[69]
MORRISR C. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia[J]. Precambrian Research, 1993, 60(1): 243-286.
[70]
FISCHERW W, KNOLLA H. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation[J]. GSA Bulletin, 2009, 121(1/2): 222-235.
[71]
ZEGEYEA, BONNEVILLES, BENNINGL G, et al. Green rust formation controls nutrient availability in a ferruginous water column[J]. Geology, 2012, 40(7): 599-602.
[72]
REDDYT R, ZHENGX Y, RODENE E, et al. Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis[J]. Geochimica et Cosmochimica Acta, 2016, 190: 85-99.
[73]
ZHENGX-Y, BEARDB L, REDDYT R, et al. Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 2016, 187: 102-122.
[74]
MARIN-CARBONNEJ, ROBERTF, CHAUSSIDONM. The silicon and oxygen isotope compositions of Precambrian cherts: a record of oceanic paleo-temperatures?[J]. Precambrian Research, 2014, 247: 223-234.
[75]
DELSTANCHES, OPFERGELTS, CARDINALD, et al. Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide[J]. Geochimica et Cosmochimica Acta, 2009, 73(4): 923-934.
[76]
THOMPSONK J, KENWARDP A, BAUERK W, et al. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans[J]. Science Advances, 2019, 5(11): eaav2869.
[77]
WUL L, PERCAK-DENNETTE M, BEARDB L, et al. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record[J]. Geochimica et Cosmochimica Acta, 2012, 84: 14-28.
[78]
LANTINKM L, DAVIESJ H F L, MASONP R D, et al. Climate control on banded iron formations linked to orbital eccentricity[J]. Nature Geoscience, 2019, 12(5): 369-374.
[79]
LIY L. Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions[J]. Earth and Planetary Science Letters, 2014, 391: 160-170.
[80]
SUNZ, ZHOUH, GLASBYG P, et al. Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents[J]. American Mineralogist, 2013, 98(1): 85-97.
BAUM, DULSKIP. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1): 37-55.
[83]
HAMADET, KONHAUSERK O, RAISWELLR, et al. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations[J]. Geology, 2003, 31(1): 35-38.
[84]
LIY, HOUK, WAND, et al. Precambrian banded iron formations in the North China Craton: silicon and oxygen isotopes and genetic implications[J]. Ore Geology Reviews, 2014, 57: 299-307.
[85]
STEINHOEFELG, HORNI, VON BLANCKENBURGF. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation[J]. Geochimica et Cosmochimica Acta, 2009, 73(18): 5343-5360.
[86]
WANGC, WUH, LIW, et al. Changes of Ge/Si, REE+Y and SmNd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the -2.54 Ga Sijiaying banded iron formation in Eastern Hebei, China[J]. Ore Geology Reviews, 2017, 80: 363-376.
[87]
KATSUTAN, SHIMIZUI, HELMSTAEDTH, et al. Major element distribution in Archean banded iron formation (BIF): influence of metamorphic differentiation[J]. Journal of Metamorphic Geology, 2012, 30(5): 457-472.
WANGY, XUH, MERINOE, et al. Generation of banded iron formations by internal dynamics and leaching of oceanic crust[J]. Nature Geoscience, 2009, 2(11): 781-784.
[91]
DREVERJ I. Geochemical model for the origin of Precambrian banded iron formations[J]. GSA Bulletin, 1974, 85(7): 1099-1106.
[92]
GARRELSR M. A model for the deposition of the microbanded Precambrian iron formations[J]. American Journal of Science, 1987, 287(2): 81-106.
[93]
MILLERA R, READINGK L. Iron - formation, evaporite, and possible metallogenetic implications for the Lower Proterozoic Hurwitz Group, District of Keewatin, Northwest Territories[C]// Canada-Northwest Territories Mineral Initiatives, 1991-1996. Ottawa: Geological Survey of Canada, 1993.
[94]
POSTHN R, HEGLERF, KONHAUSERK O, et al. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans[J]. Nature Geoscience, 2008, 1(10): 703-708.
[95]
SCHADM, HALAMAM, BISHOPB, et al. Temperature fluctuations in the Archean ocean as trigger for varve-like deposition of iron and silica minerals in banded iron formations[J]. Geochimica et Cosmochimica Acta, 2019, 265: 386-412.
[96]
CLOUDP. Paleoecological significance of the banded Iron-formation[J]. Economic Geology, 1973, 68(7): 1135-1143.
[97]
HASHIZUMEK, PINTID L, ORBERGERB, et al. A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation[J]. Earth and Planetary Science Letters, 2016, 446: 27-36.
LASCELLESD F. Plate tectonics caused the demise of banded iron formations[J]. Applied Earth Science, 2013, 122(4): 230-241.
[100]
HUMPHRISS E, KLEINF. Progress in deciphering the controls on the geochemistry of fluids in seafloor hydrothermal systems[J]. Annual Review of Marine Science, 2018, 10(1): 315-343.
[101]
JAVAUXE J, LEPOTK. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth's middle-age[J]. Earth-Science Reviews, 2018, 176: 68-86.