DONGJ J, FISCHERR A, STIXRUDEL P, et al. Water storage capacity of the martian mantle through time[J]. Icarus, 2022, 385: 115113.
[2]
SVERJENSKYD A, STAGNOV, HUANGF. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle[J]. Nature Geoscience, 2014, 7(12): 909-913.
[3]
WANIS P. Natural water remediation: chemistry and technology[J]. Current Science, 2020, 119(12): 2025-2026.
[4]
TANGY G, YANGC W, FINKELMANR B, et al. Behavior of minerals and trace elements during cleaning of three coals with moderately high ash yields[J]. Energy and Fuels, 2020, 34(2): 2501-2515.
[5]
YADAVV B, GADIR, KALRAS. Clay based nanocomposites for removal of heavy metals from water: a review[J]. Journal of Environmental Management, 2019, 232: 803-817.
[6]
TONGS, RODRIGUEZ-GONZALEZL C, PAYNEK A, et al. Effect of pyrite pretreatment, particle size, dose, and biomass concentration on particulate pyrite autotrophic denitrification of nitrified domestic wastewater[J]. Environmental Engineering Science, 2018, 35(8): 875-886.
[7]
GODDERISY, ROELANDTC, SCHOTTJ, et al. Towards an integrated model of weathering, climate, and biospheric processes[M]//OELKERS E H, SCHOTT J. Thermodynamics and kinetics of water-rock interaction. Toulouse: Mineralogical Society of America, 2009: 411-434.
[8]
SCHOTTJ, POKROVSKYO S, OELKERSE H. The link between mineral dissolution/precipitation kinetics and solution chemistry[M]//OELKERS E H, SCHOTT J. Thermodynamics and kinetics of water-rock interaction. Toulouse: Mineralogical Society of America, 2009: 207-258.
[9]
SCHWEDAP, SJOBERGL, SODERVALLU. Near-surface composition of acid-leached labradorite investigated by SIMS[J]. Geochimica et Cosmochimica Acta, 1997, 61(10): 1985-1994.
[10]
WESTRICHH R, CYGANR T, CASEYW H, et al. The dissolution kinetics of mixed-cation orthosilicate minerals[J]. American Journal of Science, 1993, 293(9): 869-893.
[11]
POKROVSKYO S, SCHOTTJ. Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control[J]. Geochimica et Cosmochimica Acta, 2004, 68(1): 31-45.
[12]
BELKHIRIL, MOUNIL, TIRIA. Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria[J]. Environmental Geochemistry and Health, 2012, 34(1): 1-13.
[13]
STEELE-MACLNNISM, MANNINGC E. Hydrothermal properties of geologic fluids[J]. Elements, 2020, 16(6): 375-380.
GUOS, CHUX, HERMANNJ, et al. Multiple episodes of fluid infiltration along a single metasomatic channel in metacarbonates (Mogok Metamorphic Belt, Myanmar) and implications for CO2 release in orogenic belts[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2020JB02098.
[16]
JINGX Y, YANGH B, CAOY Q, et al. Identification of indicators of groundwater quality formation process using a zoning model[J]. Journal of Hydrology, 2014, 514: 30-40.
[17]
CHARLTONS R, PARKHURSTD L. Modules based on the geochemical model PHREEQC for use in scripting and programming languages[J]. Computers and Geosciences, 2011, 37(10): 1653-1663.
[18]
MAFFEISA, FERRANDOS, CONNOLLYJ A D, et al. Thermodynamic analysis of HP-UHP fluid inclusions: the solute load and chemistry of metamorphic fluids[J]. Geochimica et Cosmochimica Acta, 2021, 315: 207-229.
[19]
DUANZ H, MOLLERN, WEAREJ H. An equation of state for the CH4-CO2-H2O style.1. Pure systems from 0 ℃ to 1000 ℃ and 0 to 8000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2605-2617.
[20]
DUANZ H, MOLLERN, WEAREJ H. An equation of state for the CH4-CO2-H2O style.2. Mixtures from 50 ℃ to 1000oC and 0 to 1000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2619-2631.
[21]
CONNOLLYJ A D. Phase-diagram methods for graphitic rocks and application to the system C-O-H-FeO-TiO2-SiO2[J]. Contributions to Mineralogy and Petrology, 1995, 119(1): 94-116.
[22]
OHMOTOH, KERRICKD. Devolatilization equilibria in graphitic systems[J]. American Journal of Science, 1977, 277(8): 1013-1044.
[23]
FRENCHB M. Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures[J]. Reviews of Geophysics, 1966, 4(2): 223-253.
[24]
HUIZENGAJ M. Thermodynamic modelling of a cooling C-O-H fluid-graphite system: implications for hydrothermal graphite precipitation[J]. Mineralium Deposita, 2011, 46(1): 23-33.
[25]
HUIZENGAJ M. Thermodynamic modelling of C-O-H fluids[J]. Lithos, 2001, 55(1/2/3/4): 101-114.
[26]
FREZZOTTIM L, SELVERSTONEJ, SHARPZ D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706.
[27]
FACQS, DANIELI, MONTAGNACG, et al. In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions[J]. Geochimica et Cosmochimica Acta, 2014, 132: 375-390.
TUMIATIS, TIRABOSCHIC, MIOZZIF, et al. Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behavior of organic matter in subduction zones[J]. Geochimica et Cosmochimica Acta, 2020, 273: 383-402.
[30]
MANNINGC E, FREZZOTTIM L. Subduction-zone fluids[J]. Elements, 2020, 16(6): 395-400.
[31]
SVERJENSKYD A, HARRISONB, AZZOLINID. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 ℃[J]. Geochimica et Cosmochimica Acta, 2014, 129: 125-145.
[32]
WOLERYT J. EQ3/6: a software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0)[M]. Livermore: Lawrence Livermore National Laboratory, 1992.
[33]
CONNOLLYJ A D, GALVEZM E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer[J]. Earth and Planetary Science Letters, 2018, 501: 90-102.
[34]
HELGESONH C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J]. American Journal of Science, 1969, 267(7): 729-804.
[35]
HELGESONH C, KIRKHAMD H, FLOWERSG C. Theoretical prediction of the thermodynamic behavior of aqueous-electrolytes at high-pressures and temperatures.4. Calculation of activity-coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 ℃ and 5 kb[J]. American Journal of Science, 1981, 281(10): 1249-1516.
[36]
HELGESONH C, KIRKHAMD H. Theoretical prediction of thermodynamic properties of aqueous electrolytes at high-pressures and temperatures.3. Equation of state for aqueous species at infinite dilution[J]. American Journal of Science, 1976, 276(2): 97-240.
[37]
HELGESONH C, KIRKHAMD H. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.2. Debye-Huckel parameters for activity-coefficients and relative partial molal properties[J]. American Journal of Science, 1974, 274(10): 1199-1261.
[38]
HELGESONH C, KIRKHAMD H. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.1. Summary of thermodynamic-electrostatic properties of solvent[J]. American Journal of Science, 1974, 274(10): 1089-1198.
[39]
SHOCKE L, SASSANID C, WILLISM, et al. Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes[J]. Geochimica et Cosmochimica Acta, 1997, 61(5): 907-950.
[40]
SHOCKE L, HELGESONH C, SVERJENSKYD A. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures - standard partial molal properties of inorganic neutral species[J]. Geochimica et Cosmochimica Acta, 1989, 53(9): 2157-2183.
[41]
TANGERJ C, HELGESONH C. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures - revised equations of state for the standard partial molal properties of ions and electrolytes[J]. American Journal of Science, 1988, 288(1): 19-98.
[42]
SHOCKE L, HELGESONH C. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 ℃[J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2009-2036.
[43]
SVERJENSKYD A. Thermodynamic modelling of fluids from surficial to mantle conditions[J]. Journal of the Geological Society, 2019, 176(2): 348-374.
[44]
PAND, SPANUL, HARRISONB, et al. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6646-6650.
[45]
HUANGF, SVERJENSKYD A. Extended deep Earth water model for predicting major element mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 2019, 254: 192-230.
[46]
GALVEZM E, MANNINGC E, CONNOLLYJ A D, et al. The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature[J]. Earth and Planetary Science Letters, 2015, 430: 486-498.
[47]
ZHANGC, DUANZ H. A model for C-O-H fluid in the Earth's mantle[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2089-2102.
[48]
CONNOLLYJ A D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 524-541.
[49]
SHVAROVY V. HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by windows[J]. Geochemistry International, 2008, 46(8): 834-839.
[50]
ZHONGR C, LIY X, ETSCHMANNB, et al. HighPGibbs, a practical tool for fluid-rock thermodynamic simulation in deep earth and its application on calculating nitrogen speciation in subduction zone fluids[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(5). DOI: 10.1029/2020gc008973.
[51]
SZLACHTAV, VLASOVK, KEPPLERH. On the stability of acetate in subduction zone fluids[J]. Geochemical Perspectives Letters, 2022, 21: 28-31.
[52]
LANC, TAOR, ZHANGL, et al. Carbon releasing mechanisms and flux estimation in subducting slabs: problems and progress[J]. Acta Petrologica Sinica, 2022, 38(5): 1523-1540.
[53]
CACIAGLIN C, MANNINGC E. The solubility of calcite in water at 6-16 kbar and 500-800 ℃[J]. Contributions to Mineralogy and Petrology, 2003, 146(3): 275-285.
[54]
LIW C, WANGQ X. In situ determination of magnesite solubility and carbon speciation in water and NaCl solutions under subduction zone conditions[J]. Solid Earth Sciences, 2022, 7(3): 200-214.
[55]
FARSANGS, LOUVELM, ZHAOC S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
[56]
FARSANGS, LOUVELM, ROSAA D, et al. Effect of salinity, pressure and temperature on the solubility of smithsonite (ZnCO3) and Zn complexation in crustal and upper mantle hydrothermal fluids[J]. Chemical Geology, 2021, 578: 120320.
[57]
LANC Y, TAOR B, HUANGF, et al. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids[J]. Earth and Planetary Science Letters, 2023, 603: 117989.
[58]
TUMIATIS, TIRABOSCHIC, SVERJENSKYD A, et al. Silicate dissolution boosts the CO2 concentrations in subduction fluids[J]. Nature Communications, 2017, 8: 616.
[59]
ZHANGL J, ZHANGL F, TANGM, et al. Massive abiotic methane production in eclogite during cold subduction[J]. National Science Review, 2022, 10: nwac207.
[60]
WANGC, TAOR B, WALTERSJ B, et al. Favorable p-T-fO2 conditions for abiotic CH4 production in subducted oceanic crusts: a comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite[J]. Geochimica et Cosmochimica Acta, 2022, 336: 269-290.
[61]
BROVARONEA V, MARTINEZI, ELMALEHA, et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps[J]. Nature Communications, 2017, 8: 14134.
[62]
PENGW G, ZHANGL F, TUMIATIS, et al. Abiotic methane generation through reduction of serpentinite-hosted dolomite: implications for carbon mobility in subduction zones[J]. Geochimica et Cosmochimica Acta, 2021, 311: 119-140.
[63]
BROVARONEA V, SVERJENSKYD A, PICCOLIF, et al. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere[J]. Nature Communications, 2020, 11: 3880.
[64]
HUH, BROVARONEA V, ZHANGL F, et al. Retrograde carbon sequestration in orogenic complexes: a case study from the Chinese southwestern Tianshan[J]. Lithos, 2021, 392/393: 106151.
[65]
PENGW G, ZHANGL F, MENZELM D, et al. Multistage CO2 sequestration in the subduction zone: insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J]. Geochimica et Cosmochimica Acta, 2020, 270: 218-243.
[66]
HUANGF, SVERJENSKYD A. Mixing of carbonatitic into saline fluid during panda diamond formation[J]. Geochimica et Cosmochimica Acta, 2020, 284: 1-20.
[67]
SVERJENSKYD A, HUANGF. Diamond formation due to a pH drop during fluid-rock interactions[J]. Nature Communications, 2015, 6: 8702.
[68]
POKROVSKIG S, KOKHM A, GUILLAUMED, et al. Sulfur radical species form gold deposits on Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): 13484-13489.
[69]
POKROVSKIG S, DUBESSYJ. Stability and abundance of the trisulfur radical ion S3- in hydrothermal fluids[J]. Earth and Planetary Science Letters, 2015, 411: 298-309.
[70]
LIJ L, SCHWARZENBACHE M, JOHNT, et al. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective[J]. Nature Communications, 2020, 11: 514.