1. School of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Faculty of Geomatic, Lanzhou Jiaotong University, Lanzhou 730070, China
Show less
文章历史+
Received
Accepted
Published
2022-11-17
Issue Date
2025-03-24
PDF (3494K)
摘要
冰川融水是西北干旱区水资源重要组成部分,定量评估其变化对中、下游生态环境保护和工农业经济可持续发展具有重要意义。本文基于国家气象台站日降水和气温资料、数字高程模型(DEM)以及第一次冰川编目数据,利用度日模型模拟了天山南坡阿克苏流域1957—2017年冰川物质平衡及其融水径流变化,分析了融水径流组成及其对气候变化的响应。结果表明:1957—2017年流域年平均物质平衡为-94.6 mm w.e.,61年累积物质平衡为-5.8 m w.e.。流域冰川物质平衡线呈显著上升趋势,年均上升速率为1.6 m/a。研究区年均融水径流量为53.1×108 m3,融水增加速率为0.24×108 m3/a,融水径流及其组成分量均呈显著增加趋势。在气候暖湿化背景下,流域降水的增加使得冰川区积累量增加,在剧烈的升温作用下,冰川消融加剧,气温对融水径流的作用增大,因此冰川物质平衡亏损产生的水文效应增强。研究结果可提升区域冰川水资源效应变化及其影响的认识。
模型计算了阿克苏流域1957—2017逐年平均冰川物质平衡变化和累积物质平衡变化(图7)。流域冰川年平均物质平衡为-94.6 mm w.e.,累积冰川物质平衡为-5.8 m w.e.。流域冰川在20世纪50年代基本处于平衡状态,从1961年之后长期处于显著负平衡,亏损变化趋势为-15.2 mm/10 a,平均物质平衡在2000年以后较之前明显减小,最大亏损为2001—2010年时期的-148.8 mm w.e.,这与祁连山的冰川物质最小亏损时期基本相同[25]。在降水增加与持续升温的气候背景下, 阿克苏流域冰川物质平衡处于长期强烈的亏损状态。
(1)在暖湿化气候背景下,消融量增加速率是积累增加速率的两倍多,二者相差量随时间变化逐渐增加,物质平衡处于长期强烈的亏损状态。流域冰川年平均物质平衡为-94.6 mm w.e.,累积冰川物质平衡为-5.8 m w.e.。平衡线高度变化呈显著上升趋势, 变化速率为1.6 m/a,1991—2017年与1957—1990年相比冰川区平衡线平均高度上升了22.5 m。
YAOT D, WUG J, XUB Q, et al. Asian water tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences (Chinese Version), 2019, 34(11): 1203-1209.
IPCC. Climate Change 2007:The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2007. 356-360.
[5]
JANSSONP, HOCKR, SCHNEIDERT. The concept of glacier storage: a review[J]. Journal of Hydrology, 2003, 282(1/2/3/4): 116-129.
[6]
YAOT D, WANGY Q, LIUS Y, et al. Recent glacial retreat in high Asia in China and its impact on water resource in Northwest China[J]. Science in China Series D: Earth Sciences, 2004, 47(12): 1065-1075.
GLIMS. Global Land Ice Measurements from Space (GLIMS): using the world’s glaciers to monitor climate change[R]. Flagstaff: US Geological Survey, 2000. http://www.flog.wr.usgs.gov/GLIMS/glimshome.html.
[12]
ZHAOQ D, ZHANGS Q, DINGY J, et al. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma like river catchment, Central Tian Shan[J]. Journal of Hydrometeorology, 2015, 16(6): 2383-2402.
[13]
SORGA, BOLCHT, STOFFELM, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2(10): 725-731.
[14]
DUETHMANND, MENZC, JIANGT, et al. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large[J]. Environmental Research Letters, 2016, 11(5): 054024.
[15]
WANGG Q, ZHANGJ Y, LIUJ F, et al. Quantitative assessment for climate change and human activities impact on river runoff[J]. China Water Resources, 2008, 2: 55-58.
[16]
DINGC F, ZHANGH F, GAOY Q, et al. Quantitative analysis of hydrological response to forest change in the middle of the Tianshan Mountains: a case study of the Urumqi River basin[J]. Journal of Natural Resources, 2016, 31(12): 2034-2046.
ZHANGS Q, YEB S, LIUS Y, et al. A modified monthly degree-day model for evaluating glacier runoff changes in China. Part I: model development[J]. Hydrological Processes, 2012, 26(11): 1686-1696.
[23]
ZHANGS Q, GAOX, YEB S, et al. A modified monthly degree-day model for evaluating glacier runoff changes in China. Part II: application[J]. Hydrological Processes, 2012, 26(11): 1697-1706.
ZHOUY C. Hydrology and water resource of Xinjiang river[M]. Ürümqi: Xinjiang Science and Sanitation Press, 1999: 389-400.
[28]
WUL Z, LIX. The first glacier inventory dataset of China[DB]. Lanzhou: Cold and Arid Regions Scientific Data Center, 2004. DOI: 10.3972/westdc.011.2013.db.
[29]
HED M, TANGQ C. International rivers in China[M]. Beijing: Science Press, 2000: 107-119.
[30]
LONGD J, WEIG H, ZHANGL C. Land scape change and driving force analysis of Aksu River Basin, Xinjiang during 2005-2015[J]. Journal of Zhejiang University of Water Resource and Electric Power, 2018, 30(5): 28-33.
[31]
ZHOUD C, LUOG P, XUW Q, et al. Dynamics of ecosystem services value in Aksu River watershed in 1960-2008[J]. The Journal of Applied Ecology, 2010, 21(2): 399-408.
WANGX L, LUOY, SUNY, et al. Different climate factors contributing for runoff increases in the high glacierized tributaries of Tarim River Basin, China[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100845.