GMS(Groundwater Modeling System)软件由美国Brigham Young University的环境模型研究室和美国军队排水工程试验工作站开发,是当前国际上主流的地下水模拟软件,拥有强大的建模与预测功能,其支持的“概念建模法”可以高效的将研究区场地信息反映到模型中去[22]。软件所包含的MODFLOW、MT3DMS等模块可以有效解决地浸铀矿山地下水U运移问题。
BRINERW. The toxicity of depleted uranium[J]. International Journal of Environmental Research and Public Health, 2010, 7(1): 303-313.
[3]
CORLINL, ROCKT, CORDOVAJ, et al. Health effects and environmental justice concerns of exposure to uranium in drinking water[J]. Current Environmental Health Reports, 2016, 3(4): 434-442.
[4]
FAAA, GEROSAC, FANNID, et al. Depleted uranium and human health[J]. Current Medicinal Chemistry, 2018, 25(1): 49-64.
[5]
LAGNEAUV, REGNAULTO, DESCOSTESM. Industrial deployment of reactive transport simulation: an application to uranium in situ recovery[J]. Reviews in Mineralogy and Geochemistry, 2019, 85(1): 499-528.
POSTV, VASSOLOS, TIBERGHIENC, et al. Weathering and evaporation controls on dissolved uranium concentrations in groundwater: a case study from northern Burundi[J]. Science of the Total Environment, 2017, 607/608: 281-293.
[11]
COUTELOTF M, SEAMANJ C, BAKERM. Uranium(VI) adsorption and surface complexation modeling onto vadose sediments from the Savannah River Site[J]. Environmental Earth Sciences, 2018, 77(4): 148.
[12]
WANGZ M, ZACHARAJ M, BOILYJ F, et al. Determining individual mineral contributions to U(VI) adsorption in a contaminated aquifer sediment: a fluorescence spectroscopy study[J]. Geochimica et Cosmochimica Acta, 2011, 75(10): 2965-2979.
[13]
JOHNSONR H, TUTUH. Predictive reactive transport modeling at a proposed uranium in situ recovery site with a general data collection guide[J]. Mine Water and the Environment, 2016, 35(3): 369-380.
[14]
BENSIMON R, THIRYM, SCHMITTJ M, et al. Kinetic reactive transport modelling of column tests for uranium in Situ Recovery (ISR) mining[J]. Applied Geochemistry, 2014, 51: 116-129.
[15]
CHENGT, BARNETTM O, RODENE E, et al. Effects of solid-to-solution ratio on uranium(VI) adsorption and its implications[J]. Environmental Science & Technology, 2006, 40(10): 3243-3247.
DITTRICHT M, REIMUSP W. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling[J]. Journal of Contaminant Hydrology, 2015, 175/176: 44-59.
[18]
ZHUC. A case against Kd-based transport models: natural attenuation at a mill tailings site[J]. Computers & Geosciences, 2003, 29(3): 351-359.
[19]
MILLERA W, RODRIGUEZD R, HONEYMANB D. Upscaling sorption/desorption processes in reactive transport models to describe metal/radionuclide transport: a critical review[J]. Environmental Science & Technology, 2010, 44(21): 7996-8007.
PAYNET E, BRENDLERV, OCHSM, et al. Guidelines for thermodynamic sorption modelling in the context of radioactive waste disposal[J]. Environmental Modelling & Software, 2013, 42: 143-156.
ERÖSSA, CSONDORK, IZSÁKB, et al. Uranium in groundwater: the importance of hydraulic regime and groundwater flow system’s understanding[J]. Journal of Environmental Radioactivity, 2018, 195: 90-96.
[24]
CURTISG P, DAVISJ A, NAFTZD L. Simulation of reactive transport of uranium(VI) in groundwater with variable chemical conditions[J]. Water Resources Research, 2006, 42(4): 336-338.
[25]
DAVISJ A, MEECED E, KOHLERM, et al. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(18): 3621-3641.
BHARGAVAS K, RAMR, POWNCEBYM, et al. A review of acid leaching of uraninite[J]. Hydrometallurgy, 2015, 151: 10-24.
[32]
KAKSONENA H, LAKANIEMIA M, TUOVINENO H. Acid and ferric sulfate bioleaching of uranium ores: a review[J]. Journal of Cleaner Production, 2020, 264: 121586.
[33]
DEBOISSEZON H, LEVYL, JAKYMIWC, et al. Modeling uranium and 226Ra mobility during and after an acidic in situ recovery test (Dulaan Uul, Mongolia)[J]. Journal of Contaminant Hydrology, 2020, 235: 103711.